Tag Archives: Healthcare

How Brain Computer Interfaces Will Change the Way We Interact with Our Devices

Imagine opening an app on your phone and setting exactly how long you’d like to sleep, how much REM you need, and your exact wake up time. Your settings are then executed flawlessly, giving you exactly the sleep you need without the hassle of counting sheep.

It sounds like science fiction, but it’s far from it. Major entrepreneurs like Gabe Newell believe it will be one of the early applications when Brain Computer Interfaces (BCIs) become mainstream.

BCIs are a burgeoning new healthcare technology with massive potential. Companies like Elon Musk’s Neuralink, Gabe Newell’s Valve, and Synchron are making major headway in the field, which is inching toward mass market.

HOW DOES IT WORK?

BCIs essentially use software to decipher the chemical and electrical signals coming out of people’s brains and translate them into clicks or keystrokes on a computer or mobile device or even movement on a prosthetic arm.

Hans Berger discovered electrical activity in the human brain in 1924. This paved the way for Jacques Vidal to coin the term Brain Computer Interface in his 1973 paper “Toward Direct Brain-Computer Communications”. BCIs were first tested on monkeys in the 1970s while the first endeavors on human beings were performed in the 1990s.

The main thrust of today’s BCI research is dedicated toward building solutions which will help paralyzed people control assistive devices. Beyond healthcare, there are endless potential applications for BCIs. For example, BCIs could create significantly more immersive gaming experiences in which the gamer’s thoughts move the on-screen avatar.

HR companies could use BCIs to improve employee performance by sending an alert when they sense an employee’s attention levels are down or preventing them from operating heavy machinery when they are drowsy.

The medical community has a vested interest in seeing this technology develop. It could change the lives of generations of disabled people in the near future. As BCI start-up Paradromics put it: “The potential for BCI technology is only as impactful as how well it serves the immediate needs of patients with motor & communication impairments.”

INVASIVE BCI VS. NON-INVASIVE BCI

There are essentially two types of BCIs: invasive and non-invasive.

Invasive BCIs involve a surgical implant of the device into the skull of the user. In ECOG (electrocorticography), an electrode plate is placed directly on the brain’s surface to measure its electrical activity. A second technique known as intracortical microelectrodes involves an implant that has two applications—stimulating and recording. Applications for stimulating incorporate sensory prosthetics—such as cochlear implants which provide the sensation of sound for the deaf.

Surgeries that require doctors to open up a patient’s skull are dicey to say the least. Non-invasive BCIs avoid this altogether. They can work using a variety of non-invasive technologies to measure brain activity, including EEG (electroencephalography), ERP (Event Related Potentials), MEG (Magnetoencephalography), fMRI (Functional Magnetic Resistance Imaging) or fNIRS (Functional Near-Infrared Spectroscopy).

ELON MUSK AND NEURALINK

Elon Musk founded Neuralink in 2016. Their goal was to create a device that would translate a person’s thoughts into actions. They have implanted chips into animals and notably released a video of a macaque monkey playing video games with its mind.

Although Neuralink is one of the major players of BCIs, they have lagged behind other companies in the field. Neuralink has yet to implant a BCI in humans. Their devices require highly invasive head implants which have drawn complaints from animal rights activists.

GABE NEWELL AND VALVE

Another notable player in BCIs today is Gabe Newell, founder of the gaming company Valve. Valve’s goal is to use OpenBCI headsets to develop an open-source software platform that would make it easier for developers to understand the signals coming from people’s brains.

It could enable software to understand whether a player is enjoying a game and adjust the experience accordingly. He envisions a world where games can adjust their difficulty level depending on how the player is reacting mentally.

SYNCHRON TAKES THE CAKE

Synchron’s stentrode device is currently in the forefront of the market. Synchron beat Neuralink to the punch by securing FDA approval to implant its first device into a US patient. Synchron has an advantage because the stentrode can be inserted into the brain without cutting through a skull or damaging tissue. It’s a major innovation since it can be implanted safely minimizing risk for cerebral damage.

The stentrode is about the size of a AAA battery and can be planted endovascularly rather than through the brain. In fact, it’s so seamless, patients could be sent home the same day. Synchron has already implanted stentrodes into the brains of four patients in Australia suffering from neurodegenerative diseases. All of their patients have had no side-effects and have been able to send messages through WhatsApp as well as make online purchases using the device.

The stentrode is placed close enough to the brain to detect neural signals. Those signals, which could be a thought to move a body part or a cursor on a computer screen, are then relayed out to a computer using Bluetooth technology. In the words of Synchron CEO and founder Dr. Tom Oxley: “People who are paralyzed can still think about moving their body. It’s the muscles that don’t work… We essentially bypass the broken body by taking the information directly out of the brain to control devices that let them live independently.”

WHAT’S NEXT?

We can’t predict how quickly BCIs will become a consumer-facing technology, nor the bevy of applications they will enable. What we do know is that this field is growing and will in all likelihood become a game-changing technology that completely redefines life for the disabled, as well as how we interact with our devices.

Follow us on Twitter and LinkedIn for more trending tech content!

How Chatbots Make Healthcare More Efficient

In the mid 1960s, Joseph Weizenbaum of the MIT Artificial Intelligence Laboratory created ELIZA, an early natural language processing computer program and the first chatbot therapist. While ELIZA did not change therapy forever, it was a major step forward and one of the first programs capable of taking the Turing Test. Researchers were surprised by the amount of people who attributed human-like feelings to the computer’s responses.

Fast-forward 50 years later, advancements in artificial intelligence and natural language processing enable chatbots to become useful in a number of scenarios. Interest in chatbots has increased by 500% in the past 10 years and the market size is expected reach $1.3 billion by 2025.

Chatbots are becoming commonplace in marketing, customer service, real estate, finance, and more. Healthcare is one of the top 5 industries where chatbots are expected to make an impact. This week, we explore why chatbots appeal to help healthcare providers run a more efficient operation.

SCALABILITY

Chatbots can interact with a large number of users instantly. Their scalability equips them to handle logistical problems with ease. For example, chatbots can make mundane tasks such as scheduling easier by asking basic questions to understand a user’s health issues, matching them with doctors based on available time slots, and integrating with both doctor and patient calendars to create an appointment.

At the onset of the pandemic, Intermountain Healthcare was receiving an overload of inquiries from people who were afraid they may have contracted Covid-19. In order to facilitate the inquiries, Intermountain added extra staff and a dedicated line to their call center, but it wasn’t enough. Ultimately, they turned to artificial intelligence in the form of Scout, a conversational chatbot made by Gyant, to facilitate a basic coronavirus screening which determined if patients were eligible to get tested at a time when the number of tests were limited.

Ultimately, Scout only had to ask very basic questions—but it handled the bevy of inquiries with ease. Chatbots have proved themselves to be particularly useful for understaffed healthcare providers. As they employ AI to learn from previous interactions, they will become more sophisticated which will enable them to take on more robust tasks.

ACCESS

Visiting a doctor can be challenging due to the considerable amount of time it takes to commute. Working people and those without access to reliable transport may prevent them from taking on the hassle of the trip. Chatbots and telehealth in general provide a straightforward solution to these issues, enabling patients to receive insight as to whether an in-person consultation will be necessary.

While chatbots cannot provide medical insight and prognoses, they are effective in collecting and encouraging an awareness of basic data, such as anxiety and weight changes. They can help effectively triage patients through preliminary stages using automated queries and store information which doctors can later reference with ease. Their ability to proliferate information and handle questions will only increase as natural language processing improves.

A PERSONALIZED APPROACH — TO AN EXTENT

Chatbot therapists have come a long way since ELIZA. Developments in NLP, machine learning, and more enable chatbots to deliver helpful, personalized responses to user messages. Chatbots like Woebot are trained to employ cognitive-behavioral therapy (CBT) to aid patients suffering from emotional distress by offering prompts and exercises for reflection. The anonymity of chatbots can help encourage patients to provide more candid answers unafraid of human judgment.

However, chatbots have yet to achieve one of the most important features a medical provider should have: empathy. Each individual is different, some may be scared away by formal talk and prefer casual conversation while for others, formality may be of the utmost importance. Given the delicacy of health matters, a lack of human sensitivity is a major flaw.

While chatbots can help manage a number of logistical tasks to make life easier for patients and providers, their application will be limited until they can gauge people’s tone and understand context. If recent advances in NLP and AI serve any indication, that time is soon to come.

HL7 Protocol Enhances Medical Data Transmissions–But Is It Secure?

In our last blog, we examined how DICOM became the standard format for transmitting files in medical imaging technology. As software developers, we frequently find ourselves working in the medical technology field navigating new formats and devices which require specialized attention.

This week, we will jump into one of the standards all medical technology developers should understand: the HL7 protocol.

The HL7 protocol is a set of international standards for the transfer of clinical and administrative data between hospital information systems. It refers to a number of flexible standards, guidelines, and methodologies by which various healthcare systems communicate with each other. HL7 connects a family of technologies, providing a universal framework for the interoperability of healthcare data and software.

Founded in 1987, Health Level Seven International (HL7) is a non-profit, ANSI-accredited standards developing organization that manages updates of the HL7 protocol. With over 1,600 members from over 50 countries, HL7 International represents brain trust incorporating the expertise of healthcare providers, government stakeholders, payers, pharmaceutical companies, vendors/suppliers, and consulting firms.

HL7 has primary and secondary standards. The primary standards are the most popular and integral for system integrations, interoperability, and compliance. Primary standards include the following:

  • Version 2.x Messaging Standard–an interoperability specification for health and medical transactions
  • Version 3 Messaging Standard–an interoperability specification for health and medical transactions
  • Clinical Document Architecture (CDA)–an exchange model for clinical documents, based on HL7 Version 3
  • Continuity of Care Document (CCD)–a US specification for the exchange of medical summaries, based on CDA.
  • Structured Product Labeling (SPL)–the published information that accompanies a medicine based on HL7 Version 3
  • Clinical Context Object Workgroup (CCOW)–an interoperability specification for the visual integration of user applications

While HL7 may enjoy employment worldwide, it’s also the subject of controversy due to underlying security issues. Researchers from the University of California conducted an experiment to simulate an HL7 cyber attack in 2019, which revealed a number of encryption and authentication vulnerabilities. By simulating a main-in-the-middle (MITM) attack, the experiment proved a bad actor could potentially modify medical lab results, which may result in any number of catastrophic medical miscues—from misdiagnosis to prescription of ineffective medications and more.

As software developers, we advise employing advanced security technology to protect patient data. Medical professionals are urged to consider the following additional safety protocols:

  • A strictly enforced password policy with multi-factor authentication
  • Third-party applications which offer encrypted and authenticated messaging
  • Network segmentation, virtual LAN, and firewall controls

While HL7 provides unparalleled interoperability for health care data, it does not provide ample security given the level of sensitivity of medical data—transmissions are unauthenticated and unvalidated and subject to security vulnerabilities. Additional security measures can help medical providers retain that interoperability across systems while protecting themselves and their patients from having their data exploited.

How Wearable Smart Clothing Will Revolutionize Health, Fitness, and Fashion

Wearables are in a nascent stage since coming into vogue through the advent of Samsung Galaxy Gear in 2013 and the Apple Watch in 2015. Smartwatches and fitness devices like Fitbit continue to reign supreme and help us make our lives more efficient while tracking vital health data and improving our workouts.

The next generation of wearables will be able to cultivate even more data and transmit that information to health professionals with the help of 5G. Machine learning algorithms will help predict potential health issues based on the data gathered. In order to cultivate this data, we predict that wearable clothes fitted with sensors will rise in popularity, yielding ground-breaking applications in Fitness, Healthcare, Emergency Services, and Fashion.

FITNESS

The release of Fitbit in 2009 marked the first consumer-grade wearable focused on activity tracking, precipitating the advent of the smartwatch by four years. Since then, Fitbit has designed and released a line of products focusing on activity tracking, including the Fitbit Versa, a health and fitness smartwatch, and the Fitbit Ace, an activity tracker for children 8+.

Screen Shot 2019-02-19 at 9.08.59 AM

Fitbit isn’t the only major player in the wearables game. Nadi X Yoga Pants use built-in haptic vibrations to encourage wearers to move and hold positions.

Sensoria’s second generation connected socks use textile pressure sensors to track the pressure put on the user’s foot when running and inform the user when it senses too much pressure on a particular body part to prevent injury. They also track time, cadence, pace, speed, and distance.

The Thin Ice smart vest cools your body using thermo receptors, activating the bodies brown fat pathways which effectively burns white fat (bad fat).

OMsignal’s OmBra measures heart rate and breathing rhythm in addition to time, distance, cadence pace, and impact for runners.

athos

The Athos Core is perhaps the most thorough and expansive application in smart clothes today. Athos Core collects data from a line of clothing embedded with micro-EMG sensors and analyzes it to help improve your workout. Athos shirts can evaluate electrical activity produced by your muscles to track the exertion of major upper-body muscle groups (pecs, bis, tris, delts, lats, and traps).

HEALTHCARE AND EMERGENCY SERVICES

As cited in our last blog on 5G and healthcare, 86% of doctors say wearables increase patient engagement with their own health.

cleansock_phone-02

The second generation Owlet Smart Sock is a smart-sock made for babies which uses pulse oximetry technology to monitor heart rate and sleep patterns.

Siren Smartsocks are designed to prevent diabetics from suffering from foot injuries. They have microsensors designed to continuously monitor temperature for inflammation and alert users through their smartphone app.

As wearable clothes become more popular, applications will automatically contact emergency services when the wearer’s health shows major warning signs.

Invisiwear offers wearable smart jewelry and other accessories with a panic button which gives the option to share your location with loved ones and 9-1-1.

The iBeat Heart Watch monitors health and notifies your loved ones and an EMT team in emergency situations.

FASHION

“Fashion tech” is gradually earning adoption.

On a mass consumer level, Levi’s teamed up with Google’s Project Jacquard to offer a smart trucker jacket designed for urban cyclists. Conducive yarn makes it easy for the user to tap, swipe, or hold the sleeve to fulfill simple tasks like changing music tracks, block or answer calls, or access navigation information.

Vicenza-headdress-by-The-Unseen-for-Swarovski_dezeen_468_SQ5

A London-based design firm THE UNSEEN created a line of luxury accessories including a backpack, phone case, scarf, and more which respond to air pressure, body temperature, wind, sunlight, and touch to change colors.

THE FUTURE OF WEARABLE CLOTHES

Recently, NBA commissioner Adam Silver unveiled the future of the NBA Jersey: a line of smart jerseys that allow you to customize the name and number on the jersey.

There’s no doubt that the future of wearable clothes is still unveiling itself to us as 5G receives mass adoption and programmers continue to uncover potential applications of machine learning. What is clear at this point is that wearable clothes will help make the human race smarter, stronger, healthier, and more efficient.

How 5G Will Enable the Next Generation of Healthcare

In the past month, we’ve explored 5G, or fifth generation cellular technology, and how 5G will shape the future. In this piece, we’ll spotlight the many ways in which 5G will revolutionize the healthcare industry.

DATA TRANSMISSION

Many medical machines like MRIs and other imaging machines generate very large files that must then be sent to specialists for review. When operating on a network with low bandwidth, the transmission can take a long time or not send successfully. This means patients must wait even longer for treatment, inhibiting the efficiency of healthcare providers. 5G networks will vastly surpass current network speeds, enabling healthcare providers to quickly and reliably transport huge data files, allowing patients and doctors to get results fast.

EXPANDING TELEMEDICINE

why-use-telemedicine

A study by Market Research Future showed that the future of telemedicine is bright—an annual growth rate of 16.5% is expected from 2017 to 2023. 5G is among the primary reasons for that level of growth. In order to support the real-time high-quality video necessary for telemedicine to be effective, hospitals and healthcare providers will need 5G networks that can reliably provide high-speed connections. Telemedicine will result in higher quality healthcare in rural areas and increased access to specialists around the world. Additionally, 5G will enable growth in AR, adding a new dimension to the quality of telemedicine.

REMOTE MONITORING AND WEARABLES

It’s no secret that 5G will enable incredible innovation in the IoT space. One of the ways in which IoT will enable more personalized healthcare involves wearables. According to Anthem, 86% of doctors say wearables increase patient engagement with their own health and wearables are expected to reduce hospital costs by 16% in the next five years.

Wearables like Fitbit track health information that can be vital for doctors to monitor patient health and offer preventative care. While the impact may initially be negligible, as technology advances and more applications for gathering data through wearables emerge, 5G will enable the high-speed, low-latency, data-intensive transfers necessary to take health-focused wearables to the next level. Doctors with increased access to patient information and data will be able to monitor and ultimately predict potential risks to patient health and enact preventative measures to get ahead of health issues.

Companies like CommandWear are creating wearable technology that helps save lives by enabling first responders to be more efficient and more conveniently communicate with their teams.

ARTIFICIAL INTELLIGENCE

In the future, artificial intelligence will analyze data to determine potential diagnoses and help determine the best treatment for a patient. The large amounts of data needed for real-time rapid machine learning requires ultra-reliable and high-bandwidth networks—the type of networks only 5G can offer.

One potential use case for AI in healthcare will be Health Management Systems. Picture a system that combines the Internet of Things with cloud computing and big data technology to fully exploit health status change information. Through data-mining, potential diseases can be screened and alarmed in advance. Health Management Systems will gradually receive mass adoption as 5G enables the data-transmission speeds necessary for machine learning to operate in the cloud and develop algorithms to predict future outcomes.

MAJOR PLAYERS

Right now, the major players who serve to benefit from 5G are the telecom companies developing technology that will enable mass adoption. Companies like Huawei Technologies, Nokia, Ericsson, Qualcomm, Verizon, AT&T, and Cisco Systems are investing massive sums of money into research and development and patenting various technologies, some of which will no doubt become the cornerstones of the future of healthcare.

Qualcomm recently hosted a contest to create a tricoder—a real life device based on a machine in the Star Trek TV movie franchise. Tricoders are portable medical devices that would enable patients to diagnose 13 conditions and continuously monitor five vital signs.

For a full list of major players in the 5G game, check out this awesome list from GreyB.

CONCLUSION

With human lives at stake, healthcare is the sector in which 5G could have the most transformative impact on our society. As the Qualcomm Tricoder contest shows, we are gradually building toward the society previously only dreamed about in sci-fi fiction–and 5G will help pave the way.

How 5G Will Inspire a Technological Revolution

In our last blog 5G: Exploring the Fifth Generation of Cellular Mobile Communications, we explored an overview of what 5G is and when it will be rolling out in your city.

Now, it is time for the fun stuff! 5G will change the way we interact with technology on a daily basis. Here’s a rundown of some of the revelatory applications enabled by 5G which will shape the future of our world:

THE INTERNET OF THINGS

Via Toxsl Technologies
Via Toxsl Technologies

In 2016, we wrote about how the Internet of Things will eventually enable smart-worlds. 5G is necessary in order to facilitate those changes. Most of the biggest innovations enabled by 5G are related to the Internet of Things. The world currently has sensors that are embedded in devices and objects and can communicate with each other, but they require a great deal of resources and quickly deplete LTE’s data capacity. 5G will give these sensors the ability to transmit data at speeds necessary to operate more efficiently. It will save lives by enabling smart bridges to communicate with cities and municipalities about when they require maintenance, among many other potential applications.

AUTONOMOUS VEHICLES

Via Seeking Alpha
Via Seeking Alpha

The world is at a cross-roads when it comes to autonomous vehicles. The demand is here, but in order to justify legislation, autonomous cars must be ostensibly fool-proof. 5G will enable the speed necessary for autonomous vehicles to communicate with other vehicles on the road, saving lives in the process. According to Joy Laskar, CTO of Maja Systems, self-driving cars of the future will generate an estimated two petabits of data—that’s two-million gigabits! When dealing with automotive vehicles, people’s lives will be dependent on the transmission of data. Put it simply, until 5G receives a mass roll-out, it’s unlikely that autonomous cars will become the primary vehicles on the road.

HEALTHCARE

Via Fortinet
Via Fortinet

Imagine remote diagnoses that enable people worldwide to have access to expert doctors. Imagine robot-assisted surgery that is more precise and cost-effective. Imagine 5G-powered Augmented Reality applications allowing physical therapists and patients to communicate remotely.

These are just a few of the innovations that 5G will enable within the healthcare space. 5G will eventually enable much more precise and efficient hospitals. It will give patients more personal care. Consulting firm IHS Markit reported that “5G-enabled” output between 2020 and 2035 will total at $12.3 trillion. Of that amount, roughly $1.1 trillion will encompass sales enablement in healthcare.

VIRTUAL REALITY AND AUGMENTED REALITY

Via Upload VR
Via Upload VR

Experts within the VR and AR industry believe 5G will unlock the full potential of VR and AR technology. 5G will enable VR devices to offload intensive computational work to the cloud, making VR devices smaller and increasing the fidelity of VR experiences. AR displays in autonomous cars will likely become the norm. 5G will enable VR live streaming of sporting events, creating a revolutionarily immersive viewing experience. As with autonomous cars, we will not see the full potential of VR until 5G receives mass adoption.

TAKEAWAYS

5G will permanently change the global economy. 5G will generate new revenue, facilitate new growth, and accelerate innovations beyond our wildest dreams. Dr. David Teece wrote that 5G will put mobile technology at the center of a global economy characterized by the Internet of Things turning into a true general-purpose technology. While each evolution of the cellular generation has brought amazing advancements to society, 5G promises to bring the most radical breakthroughs of any of previous generations. Ready or not, 5G is about to bring interconnectivity to a whole new level.

How the Revolutionary Mechanics of Blockchain Technology Could Serve Your Business

In the last entry in our cryptocurrency series, we explored how to secure your cryptocurrency with the right wallet. This week, we’ll take a look at the mechanics of the Blockchain across industries.

While the debate over whether Bitcoin will become the dominant cryptocurrency is far from over, the mechanics behind Bitcoin are unquestionably revolutionary. Blockchain technology has the potential to disrupt more than just currency, but industries ranging from healthcare to Wall Street.

The Blockchain is a secure ledger database shared by all parties participating in an established, distributed network of computers. The Blockchain decentralizes the process of validating transactions, allocating the duties to computers throughout the network.

Blockchain is revolutionary because it eliminates the need for a central authority, allowing for a real-time ledger that is not dependent on a single entity governing the transactions.

Imagine if in order to make changes to a text document, you had to email a colleague who would then update the document on Microsoft Word and send the updated file out to all relevant parties on the team. The updating of information would quickly become an inefficient process that is heavily dependent on the central entity (the colleague). Blockchain posits a workflow that is more like Google Docs in that it allows updates to be made in real time and shared across the network instantly without the need of a central authority. Blockchain enacts this principle by relying on computers within the network to independently validate transactions through cryptography. Thus, the validity of the ledger is determined by the many objective computers on the network rather than a single powerful entity.

The idea of decentralization can also be applied to WhatsApp, the popular messaging app that revolutionized texting and cut the cost of transactions globally. WhatsApp cut out the central authority of phone carrier companies by building the same functionality on a decentralized network (the Internet).

If you’re still confused about Blockchain, check out this awesome video by Wired breaking it down in 2 minutes:

Blockchain has already found usages in many different industries.

  • SMART CONTRACTS

Smart contracts are coded contracts embedded with the terms of an agreement. They are a method for businesses and individuals to exchange money, property, materials, or anything of value in a transparent way that avoids the services of a middleman (such as a lawyer). Smart contracts not only define the rules of an agreement, they automatically enforce the obligations provided in the terms of the contract.

Smart contracts have revolutionized the supply chain and threaten to eliminate the use of lawyers for enforcing contracts. Smart contracts and blockchain ensure data security that could also lead to the transferring of voting to an online system, potentially increasing voter turnout significantly.

  • HEALTHCARE

Within the healthcare industry, Blockchain has the potential to revolutionize data sharing between healthcare providers, resulting in more effective treatments and an overall improved ability for healthcare organizations to offer efficient care. A study from IBM showed that 56% of healthcare executives have a plan to implement a commercial blockchain solution by 2020.

  • SUPPLY CHAIN

Both within the Healthcare industry and elsewhere, blockchain is redefining supply chain management. Blockchain can provide a distributed ledger that tracks the transfer of goods and raw materials across wide-ranging geographical locations and stages. The public availability of the ledger makes it possible to trace the origin of the product down to the raw material used. For this reason, blockchain has also been applied to track organic produce supply chains.

The boon of the Internet of Things and smart objects means that blockchain technology can be extended to process data and manage smart contracts between individuals and their smart devices or even smart homes. Imagine a world where your refrigerator automatically orders eggs when it senses you are running low based on your egg eating habits. This world will be facilitated by a smart contract run on Blockchain technology embedded in an IoT device.

CONCLUSION

While the first blockchain was created for Bitcoin, applications for blockchain are constantly being implemented across industries. As Harvard Business Review smartly points out, the question in most industries is not whether blockchain will influence them, but when.

Many different cryptocurrencies are utilizing variations on Blockchain technology in order to process transactions—some of which are doing so in a more efficient manner than Bitcoin. Next week, we’ll explore the top cryptocurrencies on the market right now and which ones your business should accept.