Category Archives: iOS Development

The Future of Indoor GPS Part 3: The Broadening Appeal of Ultra Wideband

In the previous installment of our blog series on indoor positioning, we explored all that Bluetooth 5.1 has to offer.  This week, we will examine what may be a major wireless technology of the future: Ultra Wideband.

In September 2019, the inclusion of a U1 chip was listed among the innovations announced with the  iPhone 11. The U1 chip provides Ultra Wideband (UWB) connectivity. Those knowledgable on UWB recognize that the inclusion of the U1 chip is a major step toward UWB becoming a household name technology like Bluetooth and WiFi.

HISTORY

UWB signifies a number of synonymous terms, including impulse, carrier-free, baseband, time domain, nonsinusoidal, orthogonal function and large-relative-bandwidth radio/radar signals.

Guglio Marcone, UWB innovator
Guglielmo Marconi, UWB innovator

UWB was first employed by Guglielmo Marconi in 1901 to transmit Morse code sequences across the Atlantic Ocean using spark gap radio transmitters. Development began in the late 1960s with pioneering contributions by Harmuth at Catholic University of America, Ross and Robbins at Sperry Rand Corporation, and Paul van Etten at USAF’s Rome Air Development Center in Russia. In the early 2000s, UWB was used in military radars, covert communication, and briefly in medical imaging applications such as remote heart monitoring systems. Its adoption lagged until commercial interests began exploring potential innovative uses.

MODERN USAGE

via Sewio
via Sewio

UWB is a short-range wireless communication protocol. It differs from WiFi and Bluetooth in that it uses radio waves operating at a very high frequency. Ultra Wideband alludes to the wide spectrum of GHz of the waves it utilizes, 5000 MHz or higher. Wi-Fi and LTE radio bands are about one-tenth as wide, typically ranging from 20 to 80 MHz. UWB is like a radar that can lock into objects to identify their location and transmit data.

Apple describes UWB technology as providing “spatial awareness”—it can continuously scan a room and precisely lock onto specific objects. One of the major applications for it in the iPhone 11 is the ability for the user to point their device at another device to target it for an Airdrop.

INDOOR POSITIONING

The primary usages of UWB are expected to be in indoor positioning, location discovery, and device ranging according to IDC research director Phil Solis. Compared to Wi-Fi and Bluetooth, UWB is extremely low power and the high bandwidth makes it perfect for relaying mass amounts of data from a host device to other devices around 30 feet away. Unlike Wi-Fi, UWB is not particularly good at transmitting through walls, but its robustness against interference and high data rate (110 kbit/s – 6.8 Mbit/s) enable ideal, ultra-precise indoor positioning.

The inclusion of the UWB U1 chip in the iPhone 11 paves the way for applications in indoor mapping and navigation, smart home and vehicle access and control, enhanced augmented reality, and mobile payments that are more secure than NFC.

MASS ADOPTION

As new applications continue to emerge and the demand for indoor positioning increases, the major hurdle UWB faces is a lack of existing infrastructure. Apple and Huawei, the two largest smartphone makers in the world, are developing UWB projects, including chip and antenna production. Apple’s decision to include it in the iPhone 11 is the first time a UWB chip will be deployed on a smartphone. As trendsetters, it stands to reason that UWB will only grow in popularity from here and mass adoption may be inevitable.

Stay tuned for the next entry in our Indoor Positioning blog series which will explore RFID Tags!

Maximize Profits with the Top Freemium Tactics of 2020

The global gaming market is estimated at $152 billion, with 45% derived from mobile games. The mobile game market is constantly evolving, new tactics and even platforms, like Apple Arcade, are being introduced. As a mobile game developer, being dynamic and staying up on the latest trends is of the utmost importance. Staying on top of these trends will help make a more engaging and profitable mobile game.

Keeping this in mind, below are the top freemium tactics of 2020:

RETENTION IS (STILL) KING

Mobile game developers must remember that freemium games begin and end with a good retention strategy that keeps users engaged.

Daily Tasks: Set-up daily tasks that pass the Starbucks Test. One of them can be opening the app on a daily basis. These should be fairly simple to complete and offer a reward, encouraging users to integrate gameplay into their daily lives.

Rewards Pack on User Birthdays: Give users some kind of bonus on their birthday to enrich their personal relationship with the game.

Challenge Dormant Users: After 3 days, give users a special, temporary challenge to reengage them with the app. Temporary promotions can be an effective way to instill a sense of urgency in the call-to-action and trigger users to open the app.

Promotion Before Subscription/Free Trial Ends: Tempt the user to sign-up or to extend their subscription by offering a temporary promotion 24-48 hours before their free trial/subscription ends.

When it comes to measuring retention, check out the model retention rates below from The Tool (Performance-Based Mobile ASO):

  • Day 1 Retention – 40%
  • Day 7 Retention – 20%
  • Day 28 Retention – 10%

Retention can also be tracked hourly instead of daily where Day 1 Retention will be the percentage of users who returned within 24-48 hours from the install. Here’s how it might look in analytics systems such as devtodev (via The Tool):

Retention-Analytics

OUTSTREAM VIDEO ADS

Outstream Video is a new type of video ad unit, referred to sometimes as “native video”, designed for targeting mobile users.

Outstream Video ads do not require placement within a Youtube video. They play with the sound off on mobile screens when more than 70% of the ad is visible. The user can tap the ad to turn the sound on and restart the video from the beginning, or they can continue scrolling. When less than 70% of the ad is visible, the video pauses.

Advertisers such as the Hong Kong tourism board have had great success using Outstream Video ads, delivering 30% incremental reach with a 40% lower cost per completed video and 85% lower CPM.

REWARDED ADS PAY OFF

When it comes to monetizing a mobile game through advertising, rewarded ads remain at the top of the food chain. A recent survey of app publishers asked what their most successful monetization method was. Rewarded Video Ads won with 75% of the vote.

By offering users some kind of in-game reward, such as an extra life, a bonus item, or a new avatar, app developers can improve UI and engagement while encouraging ad views without bothering the user. Rewarded ads remain the ad unit with the highest earning potential.

LOOT BOXES

A loot box is a randomized box of in-game prizes. Users pay for an in-app purchase, but there is no guarantee of whether it will contain gold or pennies, the user has to make the decision to purchase in exchange a random reward. While this tactic is somewhat controversial in Europe where Belgium and the Netherlands have cracked down and labeled it gambling, it remains a popular tactic. Loot boxes are particularly effective for  Whales, wealthy mobile game users who will readily pay to improve their performance in the game.

SELL YOUR DATA

The collection and sale of data is a massive industry. If your app offers the technical means to collect user-generated data such as geolocation, it may be worth it to acquire user consent to license that data.

Applications like Waze & Foursquare receive community-generated data from their users and effectively leverage it to monetize their applications. Waze licenses data to businesses placing location-based ads, whereas Foursquare licenses point of interest geolocation data to Google & Apple for their first party GPS apps Apple Maps & Google Maps.

CONCLUSION

It is important to keep in mind that monetization is the icing on the cake—without an engaging game that hooks users, there will be nothing to monetize. However, making key decisions in the development process with the monetization strategy in mind will *literally* pay off in the long run.

Check out our previous blogs on Mobile Game Monetization for an overview of the fundamentals.

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

GPS can help you get from A to B, but what can it do to enhance your indoor retail experience?  Over the next several entries, the Mystic Media Blog will endeavor on a five-part deep dive into the top indoor location technologies and how they will help form the retail experience of the future.

GPS has become ingrained in our everyday lives. Zoomers will never know of a world without GPS, the world of Mapquest and just plain old maps.

While Google Maps, Waze, and Apple Maps can take you from your home to your favorite retailer, finding your way around large stores remains difficult. As a business owner, you want to make the act of navigating the store as easy as possible so that your customers have a positive experience finding what they want. Indoor GPS can solve that problem.

In the past five years, indoor positioning has blown up. The global market for indoor location technology is projected to hit $40.99 billion by 2022, a significant increase from $5.22 billion in 2016. That’s a compound annual growth rate of 42%. With $2.4 billion anticipated in annual spending on beacons and asset tracking by the end of 2020, IPS or Indoor Positioning Systems are here to stay.

Here are the top IPS technologies in use today:

Bluetooth-5.1-Beacon

BLE 5.1 BEACONS

Bluetooth Low Energy Beacons are tiny battery powered devices that can connect to bluetooth-enabled devices like smartphones.

When it comes to indoor positioning, the more precise the positioning, the larger the investment required to achieve it. Bluetooth Low Energy beacons have become a technology stack because they require relatively inexpensive hardware to achieve an accuracy of up to 1-3 meters. BLE 5.1 beacons have improved upon that, providing 1-10 centimeters of accuracy with minimal lag.

BLE is extremely power efficient and cost-effective, minimally draining a phone’s battery  when connected, and can be used within WiFi access points or lighting infrastructure. Since they infrequently require maintenance, they are often used in high-traffic venues.

Locatify-UWB-Ultrawideband-RTLS

ULTRA-WIDEBAND (UWB)

Ultra-wideband (UWB) is a radio technology utilizing low power consumption for a high-bandwidth connection. UWB has extremely precise locating abilities, dialing in to locate objects within one centimeter.

In September 2019, Apple announced the iPhone 11 includes a “U1” chip with UWB technology; however, UWB technology is currently not widely available. Many consider it to be the future of indoor positioning technology, but the lack of existing infrastructure will likely delay mass adoption. Regardless, for applications like warehouse tracking where ultra-precise positioning is required, UWB is an ideal solution.

RFID

RFID TAGS

RFID stands for Radio Frequency Identification. RFID is a simple technology with a tag and a reader. The reader extracts data from the tag using radio-frequency electromagnetic field and identifies the object the tag is attached to.

Although RFID is often used in combination with other technologies for more precise indoor location, the market for RFID is gradually increasing. It’s currently slated for growth in the apparel and shoes space, with great potential in other markets such as healthcare and automotive.

augmented-reality-indoor-navigation-development

AR-BASED NAVIGATION

Indoor navigation utilizing Augmented Reality technologies can do more than just help you navigate a store, it can totally revolutionize the retail experience.  AR can create virtual paths and arrows to help navigate the store. For businesses, AR can improve internal processes by making it easier for staff to navigate offices and warehouses.

This technology is enabled by placing visual markers which can be scanned by the users using their mobile device’s camera. The phone will then guide the user through the retail experience and can be customized to help them find what they need.

In May 2019, the number of AR-enabled devices around the world reached 1.05 billion. Apple and Google are actively working on improving ARKit and ARCore, their AR software development frameworks. Beyond simply helping customers and staff navigate stores, AR will pave the way for personalized shopping experiences unlike any we’ve seen before.

CONCLUSION

While BLE Beacons are currently the leader in the marketplace, many technologies are competing to pioneer the most advanced and accurate indoor location technologies. Given the countless applications, the future is looking bright for indoor location applications! Tune into our next indoor positioning blog when we take a deep dive into BLE 5.1 beacons.

How to Invest Wisely in an Application Development Project

All well-designed apps begin with an efficient app development process. An inefficient app development process will result in succumbing to pitfalls that will not only prove costly, but also lead to sub-par functionality. Here are our top tips on how to invest wisely in an application development project:

COME PREPARED

When developing your app, you need to know all of the ins and outs of what you want out of your product. During the course of the development process, you will be asked every applicable question and you will need to be able to answer them and to communicate your vision to the app development team so that they are inside your head and know it almost as well as you do.

Rather than waiting for the question to come up, get ahead of it with thorough preparation.

App development starts with the creation of a specifications document elucidating all aspects of the app to be built to ensure a thorough understanding of the idea. Create your own specifications in advance of reaching out to teams and make sure it’s comprehensive. Review the app specifications document thoroughly with prospective partners, make sure they have a comprehensive understanding and it accounts for everything you need your app to do.

Preparation is absolutely vital to staying on the same page with your application development team and avoiding costly hiccups and rebuilds down the line.

FIND THE RIGHT TEAM

Every client has different needs and every app development company has different strengths and weaknesses. Finding the right team is crucial for building the product that will get your business to the next level.

Some clients only need app development specialists, while others look for companies that can take a more holistic approach to their projects and provide input or services on marketing, web development, design and more. Ruminate on your unique needs, research and understand prospective companies strengths and weaknesses, and ensure it is a good match before committing to a long-term partnership with a company.

We recommend seeking a collaborative team with experts in app development as well as project management and the ability to expedite development by putting more programmers on projects. The best app development teams have experienced programmers that have built many apps before and can walk you through the process with ease.

Screen Shot 2019-11-19 at 1.27.16 PM

WIREFRAMES

The use of wireframes will save time and money in the app development process. A wireframe is a visual schematic or blueprint that outlines the design for an application without programming the core functions. Mobile app wireframes can take the form of downloadable apps or as websites. Wireframes replicate how the app will work and the flow of screens without incorporating core programming.

Wireframes save time and money because they help app developers get on the same page with their clients without requiring a hefty amount of programming. After reviewing the wireframes, clients can request modifications or approve the designs. The app development team then commences core programming.

The creation of wireframes before programming key functions and additions will save time, money, and headaches.

MAKE IT SCALABLE

Oftentimes when beginning the application development process, businesses elect to start by focusing on the Minimum Viable Product. While understanding what’s needed for the MVP and what’s extraneous to it, it’s vital to have an understanding of what features you may want to add in the future so that the application can be scalable to enable future iterations of the app.

While focusing on Phase 1 of the development process (building the MVP), keep a running wishlist of functions desired for Phase 2 of the development process so that as functions are added and modified, everyone remains cognizant of how current changes will support future functionality.

Mobile-app-testing

TEST, TEST, TEST

Testing doesn’t begin upon the completion of the application, it’s an ongoing process that occurs internally as new components of the app are built. It is vital not to underbudget for testing, a common mistake in the app development process.

Core functions need to be repeatedly tested, as does UI and usability. Employing dedicated testers to specialize in testing specific components like core functions, sound, design, and more will ensure a fully-functioning app.

Veteran developers use test-driven development (TDD) in which programmers create tests to define the function or improvements of a function, run tests to see if the test fails, write the code so that tests pass, run tests again, correct the code, and repeat until all tests are passed. Test-driven development guarantees code coverage with unit tests for all functions.

CONCLUSION

When hiring an app development company to build your application, hire for the long haul. An ongoing strategic relationship will help you grow and if you choose the right partner, efficiency will increase as your collaborative relationship develops. A mobile application is a major investment of time and money—invest wisely!

Contact us today to learn about how our team can efficiently build your next mobile app.

Protect Your Enterprise with the Top Mobile App Security Tips of 2019

A recent study conducted by AppKnox concluded that out of 100 top E-commerce apps, 95% failed basic security testing, 68% had four or more loopholes present in them, and 68% of apps were diagnosed with high severity threats.

Some of the most popular applications, including WhatsApp, Pokemon Go, and Facebook Messenger, are among the most frequently blacklisted among top enterprises due to the security risks they pose.

As a mobile app developer, security can lead to disaster for both your business and your consumers. Here are our top security tips for 2019:

TESTING AND CODE OPTIMIZATION

The two most important processes for building a secure app are extensive testing and constant refinement of code.

Disorganized code often causes data security risks. Minify code to ensure it is clean and concise and does not burden the application. When coding, think like an attacker and address any vulnerability a hacker could use to penetrate your application. Use libraries that show coding errors to ensure you catch security risks.

By budgeting for a rigorous testing and quality assurance process from the outset of the application development process, software developers ensure their applications will be thoroughly secure. Do not allow time-constraints getting a product to market to interfere with this crucial step. Test for functionality, usability, and security. Test, test, and test some more.

SECURE YOUR APIs

Enterprise developers are relying on application programming interfaces (APIs) more than ever, posing additional security requirements. API development and mobile app development share security considerations. Any vulnerability in an API is a vulnerability in the applications that the API connects. Solve potential headaches with the following tips:

  • Ensure all APIs integrated in your app are optimized for security.
  • Monitor all add-on software carefully to ensure that they do not present any system vulnerabilities.
  • Budget time to test the security of your APIs as well.

Check out TechBeacon’s 8 essential best practices for API security for additional reading.

LIMIT DATA COLLECTION AND PERMISSIONS

By collecting as little data as possible and minimizing permissions, app developers limit vulnerable attack points on their app. If the app does not require access to the camera or contacts, don’t request it. The same sentiment can be applied to data: make sure  users are aware of what data your application is collecting from them and only collect user data that is vital to the application’s functionality.

INTEGRATE A SECURITY TEAM FROM DAY ONE

Incorporating a dedicated security team from the inception of the development process on will ensure that the application has a cohesive security strategy intertwined with app functionality. Bringing the security team in from day one will minimize vulnerabilities that otherwise may slip through the cracks if they are brought on later in the process.

PROTECT CONSUMER DATA

Consumer data is generally the most vulnerable element for any app. The higher the volume of consumer data, the more there is for hackers to steal. In addition to limiting data collections, app developers should look into new data encryption technologies and biometric authentication. Decentralized database technology like the blockchain cryptology are among the most high-tech data protection measures tech companies can undertake.

Learn more about the Blockchain for mobile development via Application Development Trends.

CONCLUSION

In order to maintain secure environments, app developers must stay constantly stay up-to-date on the latest security technologies. Reading tech publications and maintaining awareness of the latest trends will ensure your enterprise is ready to integrate with tomorrow’s tech.

How Wearable Smart Clothing Will Revolutionize Health, Fitness, and Fashion

Wearables are in a nascent stage since coming into vogue through the advent of Samsung Galaxy Gear in 2013 and the Apple Watch in 2015. Smartwatches and fitness devices like Fitbit continue to reign supreme and help us make our lives more efficient while tracking vital health data and improving our workouts.

The next generation of wearables will be able to cultivate even more data and transmit that information to health professionals with the help of 5G. Machine learning algorithms will help predict potential health issues based on the data gathered. In order to cultivate this data, we predict that wearable clothes fitted with sensors will rise in popularity, yielding ground-breaking applications in Fitness, Healthcare, Emergency Services, and Fashion.

FITNESS

The release of Fitbit in 2009 marked the first consumer-grade wearable focused on activity tracking, precipitating the advent of the smartwatch by four years. Since then, Fitbit has designed and released a line of products focusing on activity tracking, including the Fitbit Versa, a health and fitness smartwatch, and the Fitbit Ace, an activity tracker for children 8+.

Screen Shot 2019-02-19 at 9.08.59 AM

Fitbit isn’t the only major player in the wearables game. Nadi X Yoga Pants use built-in haptic vibrations to encourage wearers to move and hold positions.

Sensoria’s second generation connected socks use textile pressure sensors to track the pressure put on the user’s foot when running and inform the user when it senses too much pressure on a particular body part to prevent injury. They also track time, cadence, pace, speed, and distance.

The Thin Ice smart vest cools your body using thermo receptors, activating the bodies brown fat pathways which effectively burns white fat (bad fat).

OMsignal’s OmBra measures heart rate and breathing rhythm in addition to time, distance, cadence pace, and impact for runners.

athos

The Athos Core is perhaps the most thorough and expansive application in smart clothes today. Athos Core collects data from a line of clothing embedded with micro-EMG sensors and analyzes it to help improve your workout. Athos shirts can evaluate electrical activity produced by your muscles to track the exertion of major upper-body muscle groups (pecs, bis, tris, delts, lats, and traps).

HEALTHCARE AND EMERGENCY SERVICES

As cited in our last blog on 5G and healthcare, 86% of doctors say wearables increase patient engagement with their own health.

cleansock_phone-02

The second generation Owlet Smart Sock is a smart-sock made for babies which uses pulse oximetry technology to monitor heart rate and sleep patterns.

Siren Smartsocks are designed to prevent diabetics from suffering from foot injuries. They have microsensors designed to continuously monitor temperature for inflammation and alert users through their smartphone app.

As wearable clothes become more popular, applications will automatically contact emergency services when the wearer’s health shows major warning signs.

Invisiwear offers wearable smart jewelry and other accessories with a panic button which gives the option to share your location with loved ones and 9-1-1.

The iBeat Heart Watch monitors health and notifies your loved ones and an EMT team in emergency situations.

FASHION

“Fashion tech” is gradually earning adoption.

On a mass consumer level, Levi’s teamed up with Google’s Project Jacquard to offer a smart trucker jacket designed for urban cyclists. Conducive yarn makes it easy for the user to tap, swipe, or hold the sleeve to fulfill simple tasks like changing music tracks, block or answer calls, or access navigation information.

Vicenza-headdress-by-The-Unseen-for-Swarovski_dezeen_468_SQ5

A London-based design firm THE UNSEEN created a line of luxury accessories including a backpack, phone case, scarf, and more which respond to air pressure, body temperature, wind, sunlight, and touch to change colors.

THE FUTURE OF WEARABLE CLOTHES

Recently, NBA commissioner Adam Silver unveiled the future of the NBA Jersey: a line of smart jerseys that allow you to customize the name and number on the jersey.

There’s no doubt that the future of wearable clothes is still unveiling itself to us as 5G receives mass adoption and programmers continue to uncover potential applications of machine learning. What is clear at this point is that wearable clothes will help make the human race smarter, stronger, healthier, and more efficient.

5G: Exploring the Fifth Generation of Cellular Mobile Communications

In December 2018, AT&T made history by becoming the first mobile carrier to roll out 5G service. The average person probably thinks that 5G is merely a high-speed cellular service, however, technology aficionados know it’s much more than that—5G has the potential to facilitate major technological shifts in the way our world works. In our two-part series, the Mystic Media Blog will take a look at what 5G is and how it could shift our society.

WHAT IS 5G?

Let’s start with the basics. The G in 5G stands for Generation. 5G is the 5th generation of wireless technology. 5G will bring exponentially faster download & upload speeds with reduced latency, enabling many practical high-tech innovations across many different industries, in addition to many new consumer applications.

SPEED

4G has been the prevailing cellular technology for the past 5-8 years. 4G is currently responsible for the high speeds powering your phone. While 4G speeds average about 16.9 megabits per second (Mbps), 5G promises to deliver speeds at the Gigabit level, greatly enhancing the things your devices can do. For example, while 4G allows for streaming in HD, 5G will make it possible to stream 4K HDR content.

ACCESS

The appeal of 5G is not just speed, but access as well. 5G will allow many more devices to connect to 5G networks at once. In order to facilitate this, carriers will have to use more cell sites. Currently, there are about 25,000 200-foot cellular towers blanketing large portions of the US with cellular service. 5G will change that, in fact, there will be far more 5G cell sites in the future, each covering a smaller region. These are called “Small Cells” and function differently from large cellular towers.

Check out Verizon’s awesome breakdown of what “Small Cells” are and their importance below.

LATENCY

5G will also greatly reduce latency, or the amount of time it takes for devices to communicate with each other’s wireless networks. For online gamers, reduced latency has a great deal of applications, as well as in healthcare, autonomous vehicles, and many other examples which we’ll cover in our next blog on what 5G can do for the future.

SPECTRUMS

Unlike 4G LTE, 5G operates on three different spectrum bands.

Low-band spectrum is a sub-1GHz spectrum. It is primarily used by carriers in the US for LTE and offers great coverage area, great building penetration, and peak data speeds of 100Mbps.

Mid-band spectrum provides faster coverage and lower latency than low-band, but fails to penetrate buildings as well as LTE. Peak speeds are up to 1Gbps on mid-band spectrum.

High-band spectrum, also known as mmWave, can offer peak speeds of up to 10Gbps with lower coverage area and weak building penetration.

The real innovations facilitated by 5G are happening at high spectrum bands which are less used by cellular companies. Frequencies of 28GHz and 39GHz have large sections of spectrum available to create big channels for high speeds. Those bands have been used for very advanced technologies previously, such as connecting base stations to remote internet links, but they have never been used for consumer devices.

WHEN IS IT ROLLING OUT?

5G’s roll out will be gradual. As mentioned earlier, until there are enough cellular cites for 5G to cover the entire nation, 5G will work together with 4G to augment connection speeds.

AT&T  officially become the first carrier to roll out 5G service earlier this month when the carrier began offering 5G in parts of Atlanta, Charlotte, Dallas, Houston, Indianapolis, Louisville, Jacksonville, Oklahoma City, Raleigh, New Orleans, Waco and San Antonio. AT&T will expand 5G in early 2019.

Verizon began offering 5G fixed in homes in October 2018. Verizon’s 5G is currently available in portions of Houston, Indianapolis, and Los Angeles, with plans to roll out standards-based mobile 5G in 2019.

T-Mobile expects to launch 5G in New York, LA, Dallas, and Las Vegas in 2019 with nationwide rollout in 2020.

Sprint will deploy 5G in early 2019 with additional markets in the future.

In our next blog, we’ll explore how 5G will enable innovations that will change the way our world works. Stay tuned!

How to Safely Encrypt Sensitive Data in Your Mobile App

In November 2014, cybercriminals perpetrated one of the biggest cybercrimes of the decade. They hacked into Sony’s computer systems, stole sensitive data, paralyzed the company’s operations, and gradually leaked embarrassing information to the media. The hackers threatened to continue until Sony agreed to pull the controversial comedy The Interview from its theatrical release.

As the headlines will tell you, the encryption of sensitive data is one of the most important investments a company can make. Facebook is currently under heat for data protection practices. The UK National Crime Agency called WannaCry a signal moment for awareness of cyberattacks and their real world impact. With the stakes higher than ever, the encryption of sensitive data in apps has never been more important.

Here are our top tips on how to safely encrypt sensitive data in your mobile app.

TIP #1: Coding and Testing

Writing secure code is fundemental to creating a secure app. Obfuscating and minifying code so that it cannot be reverse engineered is critical to keeping a secure environment. Testing and fixing bugs when they are exposed should be an ongoing investment of resources as it will pay off in the long run.

Tip #2: Scramble Data

Sometimes, the best method of encrypting data is scrambling. Software and web developers often become obsessed with storing every bit of data in databases and logs, assuming it may be useful later, but doing so can create a target for cybercriminals.

Cunning developers will only store a scrambled version of the data, making it unreadable to the outside eye, but still useful for those who know how to query it correctly.

For an in-depth dive into scrambling data, check out this awesome essay on how Amazon does it.

Tip #3: In Transit Vs. At Rest Encryption

There are two types of data to be encrypted: in transit data and at rest data. In transit data is moving data, be it in transit via email, in apps, or through browsers and other web connections. At rest data is stored in databases, the cloud, computer hard drives, or mobile devices. In transit data can be protected through the implementation of robust network security controls and firewalls. At rest data can be protected through systematically categorizing and classifying data with data protection measures in mind.

Tip #4: Secret Vs. Public Key Algorithms

Secret Key Algorithms are algorithms that use the same key for encryption and decryption. Public-key algorithms us two different encryption keys, one for encryption and the other for decryption. The public key is how the data is sent and the private key decodes it. Public-key algorithms are more secure, but require more computer processing power.

Tip #5: Blockchain Cryptography

We’ve covered the Blockchain in our past article on The Revolutionary Mechanics of the Blockchain. Blockchain cryptography has been on the rise because blockchain databases are distributed and thus more resilient in the face of a DOS attack.

Tip #6: Apps that Clean Up after Themselves 

Apps that collect sensitive information don’t necessarily need to store it. It is wise to delete sensitive data from mobile apps when the data is no longer in active use.

Tip #7 Choose the Right Algorithm

There are several popular pre-existing algorithms in existence that can be used to encrypt sensitive data in mobile apps. Check out UpWork’s awesome rundown:

  1. Advanced Encryption Standard (AES)
  2. RSA
  3. IDEA
  4. Signal
  5. Blowfish and Two Fish
  6. Ring Learning With Errors or Ring-LWE

Over the last 10 years, enterprise-wide use of encryption has jumped by 22 percent according to the Ponemon Institute. When building a mobile app, investing in encrypting sensitive data will pay off in the long run and haunt those that short-change it.

Integration with Siri and iMessage: Everything Your App Can Do

The upgrade from iOS 9 to iOS 10 was the biggest upgrade iOS has received in its 11 year history. As we covered in our blog How iOS 10′s Open Functionality Can Take Your App to the Next Level, the biggest upgrade to the operating system was the opening up of Siri and iMessage for third-party extensions.

The ability to integrate applications with iMessage and Siri creates a host of new functional possibilities for software developers. Here’s our rundown of the top ways to improve apps through Siri and iMessage integration:

SIRI INTEGRATION

As Alexa has proved, the voice assistant is burgeoning billion dollar business. With Google and Amazon leading the pack, Apple has taken many steps to improve Siri, including opening Siri up to third party integration.

However, Apple is prioritizing quality over quantity when it comes to Siri integrations.  Limiting the types of apps that can integrate with Siri enables Apple to build out robust integrations that take into account complex verbal applications. With robust integrations, Siri will be able to fulfill actions without forcing the user to alter the colloquial, natural construction of their spoken sentences. In other words: the integration is comprehensive, but it will only work with the following types of apps:

  • VoIP (Voice over IP) Calling
  • Messaging
  • Payments
  • Lists and Notes
  • Visual Codes
  • Photos
  • Workouts
  • Ride Booking
  • Car Commands
  • CarPlay
  • Restaurant Reservations

Siri integrations use “intents”. Apps that fit into the aforementioned categories describe a set of intents, or things the app can do, and Siri categorizes spoken orders by the user into intents to determine the next logical action.

Siri can pull up photos from applications like Vogue Runway through voice command. It can send money to friends through Square Cash and Monzo, and can send messages through WhatsApp and LinkedIn. Siri’s vocabulary can process complex requests like “Hey Siri, show me my best photos of idyllic sunsets taken last summer using The Roll.”

iOS 11 opened up a host of new intents. Siri can now lock smartcars and manage notes and to-do lists in productivity apps, as well as complete on-the-spot language translations.

With Siri integration, app developers can make use of one of the most extensive digital vocabularies on the planet to make life easier for users.

IMESSAGE APPS

iOS 10 not only opened iMessage up to developers, it also spawned iMessage apps: apps designed exclusively for the iMessage platform.

iMessage integration allows make it easy to pull up documents, links, and information right from iMessage and send it on the fly. Productivity apps like Evernote can integrate to allow for updates to be both sent and updated through iMessage. Travel apps like AirBNB make it easy to discuss potential travel plans. Games like Words with Friends and GamePidgeon make it easy to simultaneously play games and text. The Starbucks iMessage app allows users to send digital gift cards using Apple Pay. Dropbox and OneDrive make files stored in the cloud easily accessible and shareable.

Unlike Siri, there is no limitation on what types of apps can integrate with iMessage. Due to limited functionality, enthusiasm for developing apps exclusively for the iMessage platform is fading according to Mac Rumors, but integrating with iMessage can greatly enhance the UI of existing apps.

The Real Power of Artificial Intelligence

Technological innovations expand the possibilities of our world, but they can also shake-up society in a disorienting manner. Periods of major technological advancement are often marked by alienation. While our generation has seen the boon of the Internet, the path to a new world may be paved with Artificial Intelligence.

WHAT IS ARTIFICIAL INTELLIGENCE

Artificial intelligence is defined as the development of computer systems to perform tasks that normally require human intelligence, including speech recognition, visual perception, and decision-making. As recently as a decade ago, artificial intelligence evoked the image of robots, but AI is software not hardware. For app developers, the modern-day realization of artificial intelligence takes on a more amorphous form. AI is on all of your favorite platforms, matching the names and faces of your friends. It’s planning the playlist when you hit shuffle on Apple Music. It’s curating the best Twitter content from you based on data-driven logic that is often too complex even for the humans who programmed the AI to decipher.

MACHINE LEARNING

Currently, Machine Learning is the primary means of achieving artificial intelligence. Machine Learning is the ability for a machine to continuously improve its performance without humans having to explain exactly how to accomplish all of the tasks it has been given. Web and Software programmers create algorithms capable of recognizing patterns in data imperceptible to the human eye and alter their behavior based on them.

For example, Google’s autonomous cars view the road through a camera that streams the footage to a database that centralizes the information of all cars. In other words, when one car learns something—like an image or a flaw in the system—then all the cars learn it.

For the past 50 years, computer programming has focused on codifying existing knowledge and procedures and embedding them in machines. Now, computers can learn from examples to generate knowledge. Thus, Artificial Intelligence has already permanently disrupted the standard flow of knowledge from human to computer and vice versa.

PERCEPTION AND COGNITION

Machine learning has enabled the two biggest advances in artificial intelligence:  perception and cognition. Perception is the ability to sense, while cognition is the ability to reason. In a machine’s case, perception refers to the ability to detect objects without being explicitly told and cognition refers to the ability to identify patterns to form new knowledge.

Perception allows machines to understand aspects of the world in which they are situated and lays the groundwork for their ability to interact with the world. Advancements in voice recognition have been some of the most useful. In 2007, despite its incredibly limited functionality, Siri was an anomaly that immediately generated comparisons to HAL, the Artificial Intelligence in 2001: A Space Odyssey. 10 years later, the fact that iOS 11 enables Siri to translate French, German, Italian, Mandarin and Spanish is a passing story in our media lifecycle.

Image recognition has also advanced dramatically. Facebook and iOS both can recognize your friends’ faces and help you tag them appropriately. Vision systems (like the ones used in autonomous cars) formerly made a mistake when identifying a pedestrian once in every 30 frames. Today, the same systems err less than once in 30 million frames.

EXPANSION

AI has already made become a staple of mainstream technology products. Across every industry, decision-making executives are looking to capitalize on what AI can do for their business. No doubt whoever answers those questions first will have a major edge on their competitors.

Next week, we will explore the impact of AI on the Digital Marketing industry in the next installment of our blog series on AI.