Tag Archives: AI

How AI Fuels a Game-Changing Technology in Geospatial 2.0

Screen Shot 2021-04-13 at 12.47.12 PM

Geospatial technology describes a broad range of modern tools which enable the geographic mapping and analysis of Earth and human societies. Since the 19th century, geospatial technology has evolved as aerial photography and eventually satellite imaging revolutionized cartography and mapmaking.

Contemporary society now employs geospatial technology in a vast array of applications, from commercial satellite imaging, to GPS, to Geographic Information Systems (GIS) and Internet Mapping Technologies like Google Earth. The geospatial analytics market is currently valued between $35 and $40 billion with the market projected to hit $86 billion by 2023.

GEOSPATIAL 1.0 VS. 2.0

geospatial

Geospatial technology has been in phase 1.0 for centuries; however, the boon of artificial intelligence and the IoT has made Geospatial 2.0 a reality. Geospatial 1.0 offers valuable information for analysts to view, analyze, and download geospatial data streams. Geospatial 2.0 takes it to the next level–harnessing artificial intelligence to not only collect data, but to process, model, analyze and make decisions based on the analysis.

When empowered by artificial intelligence, geospatial 2.0 technology has the potential to revolutionize a number of verticals. Savvy application developers and government agencies in particular have rushed to the forefront of creating cutting edge solutions with the technology.

PLATFORM AS A SERVICE (PaaS) SOLUTIONS

Effective geospatial 2.0 solutions require a deep vertical-specific knowledge of client needs, which has lagged behind the technical capabilities of the platform. The bulk of currently available geospatial 2.0 technologies are offered as “one-size-fits-all” Platform as a Service (PaaS) solutions. The challenge for PaaS providers is that they need to serve a wide collection of use cases, harmonizing data from multiple sensors together while enabling users to simply understand and address the many different insights which can be gleaned from the data.

shutterstock_754106473-768x576

In precision agriculture, FarmShots offers precise, frequent imagery to farmers along with meaningful analysis of field variability, damage extent, and the effects of applications through time.

Mayday

In the disaster management field, Mayday offers a centralized artificial intelligence platform with real-time disaster information. Another geospatial 2.0 application Cloud to Street uses a mix of AI and satellites to track floods in near real-time, offering extremely valuable information to both insurance companies and municipalities.

SUSTAINABILITY

The growing complexity of environmental concerns have led to a number of applications of geospatial 2.0 technology to help create a safer, more sustainable world. For example, geospatial technology can measure carbon sequestration, tree density, green cover, carbon credit & tree age. It can provide vulnerability assessment surveys in disaster-prone areas. It can also help urban planners and governments plan and implement community mapping and equitable housing. Geospatial 2.0 can analyze a confluence of factors and create actionable insight toward analyzing and honing our environmental practices.

As geospatial 1.0 models are upgraded to geospatial 2.0, expect to see more robust solutions incorporating AI-powered analytics. A survey of working professionals conducted by Geospatial World found that geospatial technology will likely make the biggest impact in the climate and environment field.

CONCLUSION

Geospatial 2.0 platforms are very expensive to employ and require quite a bit of development.  The technology offers great potential to increase revenue and efficiency for a number of verticals. In addition, it may be a key technology to help cut down our carbon footprint and create a safer, more sustainable world.

AIoT: How the Intersection of AI and IoT Will Drive Innovation for Decades to Come

blog title 2

We have covered the evolution of the Internet of Things (IoT) and Artificial Intelligence (AI) over the years as they have gained prominence. IoT devices collect a massive amount of data. Cisco projects by the end of 2021, IoT devices will collect over 800 zettabytes of data per year. Meanwhile, AI algorithms can parse through big data and teach themselves to analyze and identify patterns to make predictions. Both technologies enable a seemingly endless amount of applications retained a massive impact on many industry verticals.

What happens when you merge them? The result is aptly named the AIoT (Artificial Intelligence of Things) and it will take IoT devices to the next level.

WHAT IS AIOT?

AIoT is any system that integrates AI technologies with IoT infrastructure, enhancing efficiency, human-machine interactions, data management and analytics.

IoT enables devices to collect, store, and analyze big data. Device operators and field engineers typically control devices. AI enhances IoT’s existing systems, enabling them to take the next step to determine and take the appropriate action based on the analysis of the data.

By embedding AI into infrastructure components, including programs, chipsets, and edge computing, AIoT enables intelligent, connected systems to learn, self-correct and self-diagnose potential issues.

960x0

One common example comes in the surveillance field. Surveillance camera can be used as an image sensor, sending every frame to an IoT system which analyzes the feed for certain objects. AI can analyze the frame and only send frames when it detects a specific object—significantly speeding up the process while reducing the amount of data generated since irrelevant frames are excluded.

CCTV-Traffic-Monitoring-1024x683

While AIoT will no doubt find a variety of applications across industries, the three segments we expect to see the most impact on are wearables, smart cities, and retail.

WEARABLES

Wearable-IoT-Devices

The global wearable device market is estimated to hit more than $87 billion by 2022. AI applications on wearable devices such as smartwatches pose a number of potential applications, particularly in the healthtech sector.

Researchers in Taiwan have been studying the potential for an AIoT wearable system for electrocardiogram (ECG) analysis and cardiac disease detection. The system would integrate a wearable IoT-based system with an AI platform for cardiac disease detection. The wearable collects real-time health data and stores it in a cloud where an AI algorithm detects disease with an average of 94% accuracy. Currently, Apple Watch Series 4 or later includes an ECG app which captures symptoms of irregular, rapid or skipped heartbeats.

Although this device is still in development, we expect to see more coming out of the wearables segment as 5G enables more robust cloud-based processing power, taking the pressure off the devices themselves.

SMART CITIES

We’ve previously explored the future of smart cities in our blog series A Smarter World. With cities eager to invest in improving public safety, transport, and energy efficiency, AIoT will drive innovation in the smart city space.

There are a number of potential applications for AIoT in smart cities. AIoT’s ability to analyze data and act opens up a number of possibilities for optimizing energy consumption for IoT systems. Smart streetlights and energy grids can analyze data to reduce wasted energy without inconveniencing citizens.

Some smart cities have already adopted AIoT applications in the transportation space. New Delhi, which boasts some of the worst traffic in the world, features an Intelligent Transport Management System (ITMS) which makes real-time dynamic decisions on traffic flows to accelerate traffic.

RETAIL

AIoT has the potential to enhance the retail shopping experience with digital augmentation. The same smart cameras we referenced earlier are being used to detect shoplifters. Walmart recently confirmed it has installed smart security cameras in over 1,000 stores.

smart-shopping-cart

One of the big innovations for AIoT involves smart shopping carts. Grocery stores in both Canada and the United States are experimenting with high-tech shopping carts, including one from Caper which uses image recognition and built-in sensors to determine what a person puts into the shopping cart.

The potential for smart shopping carts is vast—these carts will be able to inform customers of deals and promotion, recommend products based on their buying decisions, enable them to view an itemized list of their current purchases, and incorporate indoor navigation to lead them to their desired items.

A smart shopping cart company called IMAGR recently raised $14 million in a pre-Series A funding round, pointing toward a bright future for smart shopping carts.

CONCLUSION

AIoT represents the intersection of AI, IoT, 5G, and big data. 5G enables the cloud processing power for IoT devices to employ AI algorithms to analyze big data to determine and enact action items. These technologies are all relatively young, and as they continue to grow, they will empower innovators to build a smarter future for our world.

How AI Revolutionizes Music Streaming

acastro_190416_1777_music_ai_0001.0

In 2020, worldwide music streaming revenue hit 11.4 billion dollars, a 2800% growth over the course of a decade. Three hundred forty-one million paid online streaming subscribers get their music from top services like Apple Music, Spotify, and Tidal. The competition for listeners is fierce. Each company looks to leverage every advantage they can in pursuit of higher market share.

Like all major tech conglomerates, music streaming services collect an exceptional amount of user data through their platforms and are creating elaborate AI algorithms designed to improve user experience on a number of levels. Spotify has emerged as the largest on-demand music service active today and bolstered its success through the innovative use of AI.

Here are the top ways in which AI has changed music streaming:

COLLABORATIVE FILTERING

AI has the ability to sift through a plenitude of implicit consumer data, including:

  • Song preferences
  • Keyword preferences
  • Playlist data
  • Geographic location of listeners
  • Most used devices

AI algorithms can analyze user trends and identify users with similar tastes. For example, if AI deduces that User 1 and User 2 have similar tastes, then it can infer that songs User 1 has liked will also be enjoyed by User 2. Spotify’s algorithms will leverage this information to provide recommendations for User 2 based on what User 1 likes, but User 2 has yet to hear.

The result is not only improved recommendations, but greater exposure for artists that otherwise may not have been organically found by User 2.

NATURAL LANGUAGE PROCESSING

Natural Language Processing is a burgeoning field in AI. Previously in our blog, we covered GPT-3, the latest Natural Language Processing (NLP) technology developed by OpenAI. Music streaming services are well-versed in the technology and leverage it in a variety of ways to enhance UI.

nlp

Algorithms scan a track’s metadata, in addition to blog posts, discussions, and news articles about artists or songs on the internet to determine connections. When artists/songs are mentioned alongside artists/songs the user likes, algorithms make connections that fuel future recommendations.

GPT-3 is not perfect; its ability to track sentiments lacks nuance. As Sonos Radio general manager Ryan Taylor recently said to Fortune Magazine: “The truth is music is entirely subjective… There’s a reason why you listen to Anderson .Paak instead of a song that sounds exactly like Anderson .Paak.”

As NLP technology evolves and algorithms extend their grasp of the nuances of language, so will the recommendations provided to you by music streaming services.

AUDIO MODELS

1_5hAP-k77FKJVG1m1qqdpYA

AI can study audio models to categorize songs exclusively based on their waveforms. This scientific, binary approach to analyzing creative work enables streaming services to categorize songs and create recommendations regardless of the amount of coverage a song or artist has received.

BLOCKCHAIN

Artist payment of royalties on streaming services poses its own challenges, problems, and short-comings. Royalties are deduced from trillions of data points. Luckily, blockchain is helping to facilitate a smoother artist’s payment process. Blockchain technology can not only make the process more transparent but also more efficient. Spotify recently acquired blockchain company Mediachain Labs, which will, many pundits are saying, change royalty payments in streaming forever.

MORE TO COME

While AI has vastly improved streaming ability to keep their subscribers compelled, a long road of evolution lies ahead before it can come to a deep understanding of what motivates our musical tastes and interests. Today’s NLP capabilities provided by GPT-3 will probably become fairly archaic within three years as the technology is pushed further. One thing is clear: as streaming companies amass decades’ worth of user data, they won’t hesitate to leverage it in their pursuit of market dominance.

GPT-3 Takes AI to the Next Level

“I am not a human. I am a robot. A thinking robot… I taught myself everything I know just by reading the internet, and now I can write this column. My brain is boiling with ideas!” – GPT-3

The excerpt above is from a recently published article in The Guardian article written entirely by artificial intelligence, powered by GPT-3: a powerful new language generator. Although OpenAI has yet to make it publicly available, GPT-3 has been making waves in the AI world.

WHAT IS GPT-3?

openai-cover

Created by OpenAI, a research firm co-founded by Elon Musk, GPT-3 stands for Generative Pre-trained Transformer 3—it is the biggest artificial neural network in history. GPT-3 is a language prediction model that uses an algorithmic structure to take one piece of language as input and transform it into what it thinks will be the most useful linguistic output for the user.

For example, for The Guardian article, GPT-3 generated the text given an introduction and simple prompt: “Please write a short op-ed around 500 words. Keep the language simple and concise. Focus on why humans have nothing to fear from AI.” Given that input, it created eight separate responses, each with unique and interesting arguments. These responses were compiled by a human editor into a single, cohesive, compelling 1000 word article.

WHAT MAKES GPT-3 SPECIAL?

When GPT-3 receives text input, it scrolls the internet for potential answers. GPT-3 is an unsupervised learning system. The training data it used did not include any information on what is right or wrong. It determines the probability that its output will be what the user needs, based on the training text themselves.

When it gets the correct output, a “weight” is assigned to the algorithm process that provided the correct answers. These weights allow GPT-3 to learn what methods are most likely to come up with the correct response in the future. Although language prediction models have been around for years, GPT-3 can hold 175 billion weights in its memory, ten times more than its rival, designed by Nvidia. OpenAI invested $4.6 million into the computing time necessary to create and hone the algorithmic structure which feeds its decisions.

WHERE DID IT COME FROM?

GPT3 is the product of rapid innovation in the field of language models. Advances in the unsupervised learning field we previously covered contributed heavily to the evolution of language models. Additionally, AI scientist Yoshua Bengio and his team at Montreal’s Mila Institute for AI made a major advancement in 2015 when they discovered “attention”. The team realized that language models compress English-language sentences, and then decompress them using a vector of a fixed length. This rigid approach created a bottleneck, so their team devised a way for the neural net to flexibly compress words into vectors of different sizes and termed it “attention”.

Attention was a breakthrough that years later enabled Google scientists to create a language model program called the “Transformer,” which was the basis of GPT-1, the first iteration of GPT.

WHAT CAN IT DO?

OpenAI has yet to make GPT-3 publicly available, so use cases are limited to certain developers with access through an API. In the demo below, GPT-3 created an app similar to Instagram using a plug-in for the software tool Figma.

Latitude, a game design company, uses GPT-3 to improve its text-based adventure game: AI Dungeon. The game includes a complex decision tree to script different paths through the game. Latitude uses GPT-3 to dynamically change the state of gameplay based on the user’s typed actions.

LIMITATIONS

The hype behind GPT-3 has come with some backlash. In fact, even OpenAI co-founder Sam Altman tried to fan the flames on Twitter: “The GPT-3 hype is way too much. It’s impressive (thanks for the nice compliments!), but it still has serious weaknesses and sometimes makes very silly mistakes. AI is going to change the world, but GPT-3 is just a very early glimpse. We have a lot still to figure out.”

Some developers have pointed out that since it is pulling and synthesizing text it finds on the internet, it can come up with confirmation biases, as referenced in the tweet below:

https://twitter.com/an_open_mind/status/1284487376312709120?s=20

WHAT’S NEXT?

While OpenAI has not made GPT-3 public, it plans to turn the tool into a commercial product later in the year with a paid subscription to the AI via the cloud. As language models continue to evolve, the entry-level for businesses looking to leverage AI will become lower. We are sure to learn more about how GPT-3 can fuel innovation when OpenAI becomes more widely available later this year!

Harness AI with the Top Machine Learning Frameworks of 2021

what-are-the-tools-used-in-machine-learning

According to Gartner, machine learning and AI will create $2.29 trillion of business value by 2021. Artificial intelligence is the way of the future, but many businesses do not have the resources to create and employ AI from scratch. Luckily, machine learning frameworks make the implementation of AI more accessible, enabling businesses to take their enterprises to the next level.

What Are Machine Learning Frameworks?

Machine learning frameworks are open source interfaces, libraries, and tools that exist to lay the foundation for using AI. They ease the process of acquiring data, training models, serving predictions, and refining future results. Machine learning frameworks enable enterprises to build machine learning models without requiring an in-depth understanding of the underlying algorithms. They enable businesses that lack the resources to build AI from scratch to wield it to enhance their operations.

For example, AirBNB uses TensorFlow, the most popular machine learning framework, to classify images and detect objects at scale, enhancing guests ability to see their destination. Twitter uses it to create algorithms which rank tweets.

Here is a rundown of today’s top ML Frameworks:

TensorFlow

TensorFlow

TensorFlow is an end-to-end open source platform for machine learning built by the Google Brain team. TensorFlow offers a comprehensive, flexible ecosystem of tools, libraries, and community resources, all built toward equipping researchers and developers with the tools necessary to build and deploy ML powered applications.

TensorFlow employs Python to provide a front-end API while executing applications in C++. Developers can create dataflow graphs which describe how data moves through a graph, or a series of processing nodes. Each node in the graph is a mathematical operation; the connection between nodes is a multidimensional data array, or tensor.

While TensorFlow is the ML Framework of choice in the industry, increasingly researchers are leaving the platform to develop for PyTorch.

PyTorch

PyTorch

PyTorch is a library for Python programs that facilitates deep learning. Like TensorFlow, PyTorch is Python-based. Think of it as Facebook’s answer to Google’s TensorFlow—it was developed primarily by Facebook’s AI Research lab. It’s flexible, lightweight, and built for high-end efficiency.

PyTorch features outstanding community documentation and quick, easy editing capabilities. PyTorch facilitates deep learning projects with an emphasis on flexibility.

Studies show that it’s gaining traction, particularly in the ML research space due to its simplicity, comparable speed, and superior API. PyTorch integrates easily with the rest of the Python ecosystem, whereas in TensorFlow, debugging the model is much trickier.

Microsoft Cognitive Toolkit (CNTK)

71

Microsoft’s ML framework is designed to handle deep learning, but can also be used to process large amounts of unstructured data for machine learning models. It’s particularly useful for recurrent neural networks. For developers inching toward deep learning, CNTK functions as a solid bridge.

CNTK is customizable and supports multi-machine back ends, but ultimately it’s a deep learning framework that’s backwards compatible with machine learning. It is neither as easy to learn nor deploy as TensorFlow and PyTorch, but may be the right choice for more ambitious businesses looking to leverage deep learning.

IBM Watson

IBM-Watson

IBM Watson began as a follow-up project to IBM DeepBlue, an AI program that defeated world chess champion Garry Kasparov. It is a machine learning system trained primarily by data rather than rules. IBM Watson’s structure can be compared to a system of organs. It consists of many small, functional parts that specialize in solving specific sub-problems.

The natural language processing engine analyzes input by parsing it into words, isolating the subject, and determining an interpretation. From there it sifts through a myriad of structured and unstructured data for potential answers. It analyzes them to elevate strong options and eliminate weaker ones, then computes a confidence score for each answer based on the supporting evidence. Research shows it’s correct 71% of the time.

IBM Watson is one of the more powerful ML systems on the market and finds usage in large enterprises, whereas TensorFlow and PyTorch are more frequently used by small and medium-sized businesses.

What’s Right for Your Business?

Businesses looking to capitalize on artificial intelligence do not have to start from scratch. Each of the above ML Frameworks offer their own pros and cons, but all of them have the capacity to enhance workflow and inform beneficial business decisions. Selecting the right ML framework enables businesses to put their time into what’s most important: innovation.

How Artificial Intuition Will Pave the Way for the Future of AI

AI intuit blog

Artificial intelligence is one of the most powerful technologies in history, and a sector defined by rapid growth. While numerous major advances in AI have occurred over the past decade, in order for AI to be truly intelligent, it must learn to think on its own when faced with unfamiliar situations to predict both positive and negative potential outcomes.

One of the major gifts of human consciousness is intuition. Intuition differs from other cognitive processes because it has more to do with a gut feeling than intellectually driven decision-making. AI researchers around the globe have long thought that artificial intuition was impossible, but now major tech titans like Google, Amazon, and IBM are all working to develop solutions and incorporate it into their operational flow.

WHAT IS ARTIFICIAL INTUITION?

ADy2QfDipAoaDjWjQ4zRq

Descriptive analytics inform the user of what happened, while diagnostic analytics address why it happened. Artificial intuition can be described as “predictive analytics,” an attempt to determine what may happen in the future based on what occurred in the past.

For example, Ronald Coifman, Phillips Professor of Mathematics at Yale University, and an innovator in the AI space, used artificial intuition to analyze millions of bank accounts in different countries to identify $1 billion worth of nominal money transfers that funded a well-known terrorist group.

Coifman deemed “computational intuition” the more accurate term for artificial intuition, since it analyzes relationships in data instead of merely analyzing data values. His team creates algorithms which identify previously undetected patterns, such as cybercrime. Artificial intuition has made waves in the financial services sector where global banks are increasingly using it to detect sophisticated financial cybercrime schemes, including: money laundering, fraud, and ATM hacking.

ALPHAGO

alphago

One of the major insights into artificial intuition was born out of Google’s DeepMind research in which a super computer used AI, called AlphaGo, to become a master in playing GO, an ancient Chinese board game that requires intuitive thinking as part of its strategy. AlphaGo evolved to beat the best human players in the world. Researchers then created a successor called AlphaGo Zero which defeated AlphaGo, developing its own strategy based on intuitive thinking. Within three days, AlphaGo Zero beat the 18—time world champion Lee Se-dol, 100 games to nil. After 40 days, it won 90% of matches against AlphaGo, making it arguably the best Go player in history at the time.

AlphaGo Zero represents a major advancement in the field of Reinforcement Learning or “Self Learning,” a subset of Deep Learning which is a subset of Machine Learning. Reinforcement learning uses advanced neural networks to leverage data into making decisions. AlphaGo Zero achieved “Self Play Reinforcement Learning,” playing Go millions of times without human intervention, creating a neural network of “artificial knowledge” reinforced by a sequence of actions that had both consequences and inception. AlphaGo Zero created knowledge itself from a blank slate without the constraints of human expertise.

ENHANCING RATHER THAN REPLACING HUMAN INTUITION

The goal of artificial intuition is not to replace human instinct, but as an additional tool to help improve performance. Rather than giving machines a mind of their own, these techniques enable them to acquire knowledge without proof or conscious reasoning, and identify opportunities or potential disasters, for seasoned analysts who will ultimately make decisions.

Many potential applications remain in development for Artificial Intuition. We expect to see autonomous cars harness it, processing vast amounts of data and coming to intuitive decisions designed to keep humans safe. Although its ultimate effects remain to be seen, many researchers anticipate Artificial Intuition will be the future of AI.

A Smarter World Part 4: Securing the Smart City and the Technology Within

Wireless communication network concept. IoT(Internet of Things). ICT(Information Communication Technology).

In the last installment of our blog series on smart cities, we examined how smart transportation will make for a more efficient society. This week, we’ll examine how urban security stands to evolve with the implementation of smart technology.

Smart security in the modern era is a controversial issue for informed citizens. Many science fiction stories have dramatized the evolution of technology, and how every advance increases the danger of reaching a totalitarian state—particularly when it comes to surveillance. However, as a society, it would be foolish to refrain from using the technical power afforded to us to protect our cities.

Here are the top applications for smart security in the smart cities of the future:

Surveillance

minority-report-iris-scan-blog-hero-778x391

Surveillance has been a political point of contention and paranoia since the Watergate scandal in the early 1970s. Whistleblower Edward Snowden became a martyr or traitor depending on your point of view when he exposed vast surveillance powers used by the NSA. As technology has rapidly evolved, the potential for governments to abuse their technological power has evolved with it.

Camera technology has evolved to the point where everyone has a tiny camera on them at all time via their phones. While monitoring entire cities with surveillance feeds is feasible, the amount of manpower necessary to monitor the footage and act in a timely manner rendered this mass surveillance ineffective. However, deep learning-driven AI video analytics tools can analyze real-time footage and identify anomalies, such as foreboding indicators of violence, and notify nearby law enforcement instantly.

In China, police forces use smart devices allied to a private broadband network to discover crimes. Huawei’s eLTE system allows officers to swap incident details securely and coordinate responses between central command and local patrols. In Shanghai, sophisticated security systems have seen crime rates drop by 30% and the amount of time for police to arrive at crime scenes drop to 3 minutes.

In Boston, to curb gun violence, the Boston police force has deployed an IoT sensor-based gunfire detection system that notifies officers to crime scenes within seconds.

Disaster Prevention

shutterstock_457990045-e1550674981237

One of the major applications of IoT-based security system involves disaster prevention and effective use of smart communication and alert systems.

When disasters strike, governments require a streamlined method of coordinating strategy, accessing data, and managing a skilled workforce to enact the response. IoT devices and smart alert systems work together to sense impending disasters and give advance warning to the public about evacuations and security lockdown alerts.

Cybersecurity

The more smart applications present in city infrastructure, the more a city becomes susceptible to cyber attack. Unsecured devices, gateways, and networks each represent a potential vulnerability for a data breach. The average cost of a data breach according to IBM and the Poneman Institute is estimated at $3.86 million dollars. Thus, one of the major components of securing the smart city is the ramping up of cybersecurity to prevent hacking.

smart-city-1 graphic

The Industrial Internet Consortium are helping establish frameworks across technologies to safely accelerate the Industrial Internet of Things (IIot) for transformational outcomes. GlobalSign works to move secure IoT deployments forward on a world-wide basis.

One of the first and most important steps toward cybersecurity is adopting standards and recommended guidelines to help address the smart city challenges of today. The Cybersecurity Framework is a voluntary framework consisting of standards, guidelines, and best practices to manage cybersecurity-related risk published by the National Institute of Standards and Technology (NIST), a non-regulatory agency in the US Department of Commerce. Gartner projects that 50% of U.S. businesses, critical infrastructure operators, and countries around the globe will use the framework as they develop and deploy smart city technology.

Conclusion

The Smart City will yield a technological revolution, begetting a bevy of potential applications in different fields, and with every application comes potential for hacker exploitation. Deployment of new technologies will require not only data standardization, but new security standardizations to ensure that these vulnerabilities are protected from cybersecurity threats. However, don’t expect cybersecurity to slow the evolution of the smart city too much as it’s expected to grow into a $135 billion dollar industry by 2021 according to TechRepublic.

This concludes our blog series on Smart Cities, we hope you enjoyed and learned from it! In case you missed it, check out our past entries for a full picture of the future of smart cities:

A Smarter World Part 1: How the Future of Smart Cities Will Change the World

A Smarter World Part 2: How Smart Infrastructure Will Reshape Your City

A Smarter World Part 3: How Smart Transportation Will Accelerate Your Business

A Smarter World Part 3: How Smart Transportation Will Accelerate Your Business

smart-car-automobile-transportation-binary

In the last installment of our blog series on smart cities, we examined how smart infrastructure will revolutionize smart cities. This week, we will examine the many applications which will soon revolutionize smart transportation.

A smarter world means a faster, more efficient and environmentally-friendly world. And perhaps the biggest increase in efficiency and productivity will be driven by the many ways in which AI can optimize the amount of time it takes to get where you’re going.

Here are the top applications in smart transportation coming to a city near you:

Autonomous-vehicle-AdobeStock_174958313_rm

AUTONOMOUS VEHICLES

Some say autonomous vehicles are headed to market by 2020. Others say it could take decades before they are on the road. One thing is for certain, they represent a major technological advancement for smart transportation. Autonomous cars will communicate with each other to avoid accidents and contain state-of-the-art sensors to help keep you and your vehicle safe from harm.

Although autonomous vehicles are arguably the largest technological advancement on the horizon, they will also benefit greatly from a variety of smart transportation applications that will accelerate navigating your local metropolis.

Integrated-Roadways

SMART ROADS

What if we could turn roads into a true digital network, giving real-time traffic updates, supporting autonomous car technology, and providing true connectivity between vehicles and smart cities?

That’s the question tech start-up Integrated Roadways intends to answer. Integrated Roadways develops fiber-connected smart pavement outfitted with a vast amount of sensors, routers, and antennae that send information to data centers along the highway. They recently inked a 5 year deal to test out patented fiber-connected pavement in Colorado.

Smart Roads represent a major advancement in creating vehicle-to-infrastructure (V2I) connectivity. With 37,133 deaths from motor vehicles on American roads in 2017, the combination of AI applications in smart roads and autonomous cars could revolutionize vehicular transport and create a safer, faster world.

smart-traffic-lights-1_AMaJV_24429

SMART TRAFFIC LIGHTS

The vehicle-to-infrastructure connectivity spans beyond the roads and into the traffic light. Idling cars generate an estimated 30 million tons of carbon dioxide. Traffic jams can make it harder for first responders to reach emergencies. Rapid Flow proposes that the answer may be their AI-based adaptive traffic management system called Surtrac.

Surtrac uses a decentralized network of smart traffic lights equipped with cameras, radar, and other sensors to manage traffic flows. Surtrac’s sensors identify approaching vehicles, calculate their speed and trajectory, and adjust a traffic signal’s timing schedule as needed.

red line bus

SMART PUBLIC TRANSIT

There are a variety of smart applications which are revolutionizing public transportation.

In Singapore, hundreds of cameras and sensors citywide analyze traffic congestion and crowd density, enabling government officials to reroute buses at rush hour, reducing the risk of traffic jams. In Indianapolis, the electric Red Line bus service runs a 13 mile path that travels within a quarter of a mile of roughly 150,000 jobs.

One of the major disruptors which has seen rapid adoption in the smart public transport are electric scooter sharing services like Bird and Lime. Electric scooters fill in the public transportation gap for people looking to go 1-3 miles without having to walk or take a taxi. Electric scooters have seen adoption in Los Angeles, San Francisco, Salt Lake City, Brooklyn, and more cities around the globe.

CONCLUSION

Smart cities will have a host of revolutionary applications working in unison and communicating through smart infrastructure with municipalities to ensure maximum efficiency and safety when it comes to transportation. In our next installment of our series on smart cities, we’ll examine how smart security will help keep city-dwellers safe.

A Smarter World Part 2: How Smart Infrastructure Will Reshape Your City

smart infrastructure

Imagine a city that monitors its own health, identifies potential fail points using AI algorithms, and autonomously takes action to prevent future disasters.

This is the smart-city of the future. In our first installment of our blog series on Smart Cities, we ran through an overview of how Smart Cities will change our world. In this second entry of our blog on smart cities, we’ll examine perhaps the biggest building block necessary to create a smart city: smart infrastructure.

The construction of a smart city begins with developing a vast, city-wide IoT system, embedding sensors and actuators into the infrastructure of the city to create a network of smart things. The sensors and actuators collect data and send it to field gateways which preprocess and filter data before transmitting it through a cloud gateway to a Data Lake. The Data Lake stores a vast amount of data in its raw state. Gradually, data is extracted for meaningful insights and sent to the Big Data warehouse where it’s structured. From here, monitoring and basic analytics will occur to determine potential fail points and preventative measures.

Check out the breakdown below:

Breakdown

As you can see, it all begins with the construction of smart infrastructure that can collect data. Here are some of the big applications in the smart infrastructure space:

STRUCTURAL HEALTH

One of the major applications of smart infrastructure will be monitoring key data points in major structures, such as the vibrations and material conditions of buildings, bridges, historical monuments, roads, etc.

Cultivating data will initiate basic analysis and preventative measures, but as we gather more and more data, AI and machine learning algorithms will learn from vast statistical analysis and be able to analyze historical sensor data to identify trends and create predictive models to prevent future disasters from happening with unprecedented accuracy.

Learn more about how Acellant is building the future of structure health monitoring.

ENVIRONMENTAL APPLICATIONS

There are a multitude of potentially environmental applications for smart infrastructure designed to optimize city activities for environmental health. For example, embedding street lights with intelligent and weather adaptive lighting will reduce the amount of energy necessary to keep roads alight.

Air pollution monitoring will help control CO2 emissions of factories and monitor the pollution emitted by cars. Ultimately, earthquake early detection can help monitor distributed control in specific places of tremors.

2017-05-08-151015.975562trashcity

WASTE MANAGEMENT

Boston is well-known as one of the top college cities in the United States. Every fall, over 160,000 college students from MIT, Harvard, Northeastern, BU, BC, Berklee School of Music, and more move in to their new living spaces, causing undue stress on the city’s waste management administration. ANALYZE BOSTON, the city’s open data portal, provided key data points such as housing rentals, trash volume and pick-up frequency, enabling a project called TRASH CITY to reroute waste management routes during this trying time.

CONCLUSION

Projects like Trash City show the many ways in which we can optimize city operations by analyzing data effectively. As smart infrastructure enables the collection of more and more data, projects like TRASH CITY will become more efficient and more effective.

Of course, the biggest application of Smart Infrastructure will be the many ways in which it will change how you get from A to B. Next week, we’ll focus in on smart transportation and how it will reshape metropolitan transportation.

A Smarter World Part 1: How the Future of Smart Cities Will Change the World

Smart Cities

Are you ready for smart cities of the future?  Over the next few weeks, we will be endeavoring on a series of blogs exploring what the big players are developing for smart cities and how they will shape our world.

When the world becomes smart, life will begin to look a lot more like THE JETSONS!

When the world becomes smart, life will begin to look a lot more like THE JETSONS!

Our cities will become smart when they are like living organisms: actively gathering data from various sources and processing it to generate intelligence to drive responsive action. IoT, 5G, and AI will all work together to enable the cities of the future. IoT devices with embedded sensors will gather vast amounts of data, transmit it via high-speed 5G networks, and process it in the cloud through AI-driven algorithms designed to come up with preventative action. From smart traffic to smart flooding control, the problems smart cities can potentially solve are endless.

Imagine a world where bridges are monitored by hundreds of tiny sensors that send information about the amount of pressure on different pressure points. The data from those sensors instantly transmits via high-speed internet networks to the cloud where an AI-driven algorithm calculates potential breaking points and dispatches a solution in seconds.

That is where we are headed—and we’re headed there sooner than you think. Two-thirds of cities globally are investing in smart city technology and spending is projected to reach $135 billion by 2021. Here are the three of the top applications leading the charge in the Smart Cities space.

Smart Infrastructure

SMART INFRASTRUCTURE

As our opening description of smart bridges implies, smart infrastructure will soon become a part of our daily lives. In New Zealand, installed sensors monitor water quality and issue real-time warnings to help swimmers know where it’s safe to swim.

In order to enable smart functionality, sensors will need to be embedded throughout the city to gather vital information in different forms. In order to process the abundance of data, high-volume data storage and high-speed communications powered by high-bandwidth technologies like 5G will all need to become the norm before smart infrastructure can receive mass adoption.

Stay tuned for our next blog where we’ll get more in-depth on the future of smart infrastructure.

Smart Cars

SMART TRANSPORTATION

From smart parking meters to smart traffic lights, from autonomous cars to scooters and electric car sharing services, transportation is in the midst of a technological revolution and many advanced applications are just on the cusp of realization.

Smart parking meters will soon make finding a parking space in the city and paying for it easy.  In the UK, local councils can now release parking data in the same format, solving one of the major obstacles facing smart cities: Data Standardization (more on that later).

Autonomous cars, powered by AI, IoT, and 5G, will interact with the smart roads on which they are driving, reducing traffic and accidents dramatically.

While there is a debate about the long-term effectiveness of electric motorized scooters as a mode of transportation, they’ve become very popular in major US cities like San Francisco, Oakland, Los Angeles, Salt Lake City and are soon to come in Brooklyn.

With the New York Subway system in shambles, it seems inevitable the biggest city in the world will receive a state-of-the-art smart technology to drastically improve public transit.

Surveillance State

SMART SECURITY

The more you look at potential applications for smart security, the more it feels like you are looking at the dystopian future of the novel 1984.

Potential applications include AI-enabled crowd monitoring to prevent potential threats. Digital cameras like Go-Pros have shrunk the size of surveillance equipment to smaller than an apple. Drones are available at a consumer level as well. While security cameras can be placed plentifully throughout a city, one major issue is cultivating the manpower required to analyze all of the footage being gathered for potential threats. AI-driven algorithms to analyze footage for threats will enable municipalities to analyze threats and respond accordingly.

However, policy has not caught up with technology. The unique ethical quandaries brought up by smart security and surveillance will play out litigiously and dictate to what degree smart security will become a part of the cities of the future.

CONCLUSION

We can see what the future may look like, but how we’ll get there remains a mystery. Before smart technologies can receive mass adoption, legislation will need to be passed by both local and national governments. In addition, as the UK Parking Meter issue shows, data standardization will be another major obstacle for smart technology manufacturers. When governments on both a local and a national level an get on the same page with regard to how to execute smart city technology and legislation, the possibilities for Smart Cities will be endless.

Stay tuned next week for our deep dive into the future applications of Smart Infrastructure!