Tag Archives: Apple

Mapping the Future: Essential Mobile Application Development Languages for Tech Innovators

sample mobile phone graphics

Mobile applications have become an important part of our lives, and as a result, building mobile apps has become a booming industry. With over 3.2 billion smartphone users, it is only reasonable to see businesses gravitating towards building mobile apps as part of their digital strategy. As a business owner navigating this dynamic landscape, understanding the key programming languages driving mobile app development is paramount. Developing mobile applications that meet user’s needs requires competence in one or more programming languages. In this blog, we will provide an overview of the top mobile application development languages including their advantages and potential drawbacks.

Java Programming Language

Java: 

As a highly versatile language, Java is known for its ‘write once, run anywhere’ capability. This feature grants developers the flexibility to create apps that can function across multiple platforms while promoting cost-effectiveness. Its wide use in Android app development is a testament to its adaptability, making it a popular choice for different types of mobile applications. Further, Java exhibits robustness and scalability, attributed to its suitability for developing large-scale applications – a key reason why it’s favored in enterprise-level solutions. Here is how Java’s application development language is impacting industries.

Java (Android): Google – Google, the creator of the Android operating system, extensively utilizes Java for Android application development. Notable apps built using Java include Gmail, Google Maps, and Google Drive.

Swift (iOS): 

Swift, the cornerstone of native iOS application development, is known for its superior performance. Designed to be fast and efficient, it significantly enhances the overall performance of iOS applications. Additionally, Swift’s modern features enhance code safety and readability, reducing the potential for errors and improving the overall development experience. Its constant evolution, courtesy of Apple’s support and a growing community, makes it a continually improving language.

Swift (iOS): Apple – As the originator of Swift, Apple naturally employs this language for its iOS app development. Examples of Swift-built apps include Apple Music, iWork, and the Apple Store app.

Kotlin (Android):

Kotlin is a relatively new programming language that is gaining popularity for building Android apps. Since its release in 2011, it has become the official programming language for native Android apps. Kotlin’s concise syntax supports developers in writing more maintainable and readable code.

Kotlin has become the official language for Android app development due to its seamless interoperability with existing Java code, allowing for a smooth transition for developers. Known for its conciseness and expressive syntax, Kotlin reduces boilerplate code, thereby making development more efficient. With its modern language features, Kotlin simplifies complex tasks and offers enhanced functionality.

Kotlin (Android): Pinterest – Pinterest has adopted Kotlin for its Android app development due to its conciseness and compatibility with Java. The transition to Kotlin has effectively streamlined Pinterest’s app development processes.

JavaScript

JavaScript, coupled with frameworks like React and React Native paves the way for cross-platform development. This allows developers to build applications for both iOS and Android from a single codebase, fostering greater efficiency. Add to this, the immense JavaScript community and rich libraries, and developers will have access to faster development cycles and a wide range of resources.

JavaScript (React Native): Facebook & Alibaba React Native, which enables cross-platform development from a single codebase, is Facebook’s chosen framework for mobile app development. The Facebook and Instagram apps are a testament to this. The Alibaba app, a prominent e-commerce platform, also utilizes React Native for app development.

Python: 

Python’s simplicity and readability make it an excellent choice for rapid prototyping and development. With a supportive community that provides a wealth of libraries and frameworks for mobile app development, Python enhances productivity. While not as common as Java or Swift for mobile development, Python showcases versatility, making it suitable for particular types of applications like data-driven and educational apps.

Python (Kivy, BeeWare): Instagram – Instagram uses Python, albeit not as its primary language, for backend development. Python’s simplicity and versatility are advantageous for rapid prototyping and backend infrastructure management.

C# Programming languages

C#:

C# (C Sharp), developed by Microsoft, stands out as a versatile and powerful language for mobile app development. Known for its strong adherence to object-oriented programming principles, C# fosters the creation of modular and scalable code, enhancing application maintainability. With a vibrant developer community, many businesses find C# essential for efficient and scalable mobile applications, especially within the Microsoft ecosystem or for cross-platform endeavors. 

C# leverages this powerful language extensively for the development of various mobile applications, including those integral to its own product and service offerings. Notably, Microsoft combines C# with Xamarin, another one of its creations, to bolster its app development capabilities. This powerful blend of technologies underpins the development of flagship applications such as Microsoft Office and Azure. Harnessing the synergy of C# and Xamarin, Microsoft continues to innovate, delivering robust applications that cater to a wide array of user needs and preferences.

Objective – C:

Objective-C is an object-oriented language that was the primary language for building iOS apps before Swift. Even with the introduction of Swift, Objective-C remains an important language for businesses and developers looking to build new apps. This object-oriented programming language, developed by the tech giant Apple, was instrumental in the creation of numerous apps that transformed the mobile landscape. Its dynamic runtime and the ability to use C and C++ libraries gives Objective-C an edge for particular types of applications. It offers a structured approach to programming and a large body of pre-existing open source code, enabling developers to build robust and efficient applications.

Objective-C (iOS): Uber – Uber initially built its iOS app using Objective-C. While Uber is transitioning to Swift, it continues to maintain and update its Objective-C code as part of the migration process.

React Native

React Native:

React Native, developed by Facebook, revolutionizes mobile app development by enabling cross-platform compatibility with a single codebase, streamlining both iOS and Android applications. Its efficiency stems from a component-based architecture, facilitating the creation of reusable user interface elements and eliminating the need for separate development cycles for each platform.

React Native (Facebook): As the developer of React Native, Facebook utilizes the framework for its own mobile applications, including the flagship Facebook app.

Flutter:

Flutter, an open-source UI toolkit by Google, is reshaping application development by allowing the creation of natively compiled apps for mobile, web, and desktop from a single codebase. Its emphasis on expressive user interfaces is powered by the Dart programming language. A notable feature is the ‘hot reload,’ enabling instant visualization of changes during development for swift iterations.

Flutter (BMW):  A recognized titan in the automotive industry, has not been shy about embracing cutting-edge technologies like Google’s Flutter to enrich its mobile applications and projects. The German automaker has seen the value in Flutter’s fast development cycles, expressive UI, and native performance, utilizing it to deliver high-quality, immersive user experiences. 

Flutter (Capital One): A renowned name in the financial services sector, has been at the forefront of technological innovation and has recognized the potential of Flutter in mobile application development. Capital One was quick to adopt Flutter, finding it to be a versatile and efficient tool in its technological arsenal. The company opted for Flutter due to its unique features that allow for the creation of high-quality native experiences on both iOS and Android from a single codebase.

The choice of a mobile app language significantly influences factors such as performance, speed, community support, and platform compatibility. Therefore, developers need to carefully consider project requirements, target platforms, and personal preferences when deciding on the most suitable language for their mobile app development projects

top mobile application languages

Challenges and Opportunities

In the fast-paced world of mobile application development, optimal language selection can be a game-changer. Each language presents its own unique set of challenges and opportunities. 

Java, hailed for its versatility, grapples with performance optimization and interface responsiveness. However, its platform-independent nature and rich libraries lend themselves well to cross-platform development and the creation of scalable enterprise solutions. 

Swift, Apple’s first language of choice for iOS development, despite being exclusive to Apple devices, presents an opportunity to create high-quality applications. Its strong focus on safety and modern syntax enhances app quality and stability, spelling success for developers in the Apple ecosystem.

Kotlin, now recognized as the official language for Android, may seem challenging for developers transitioning from Java. Nevertheless, it’s recognized for increasing productivity and improving app performance on the Android platform, making it an attractive option for Android development. 

JavaScript, especially when utilized with frameworks like React Native confronts issues owing to its single-threaded nature. However, despite these challenges, JavaScript continues to be a powerhouse for cross-platform development largely because of the scale of its adoption and the strength of its developer community. Additionally, with React Native, developers have the advantage of writing once and deploying on multiple platforms, thereby increasing efficiency and reducing the time-to-market.

Python, despite the challenges presented by the Global Interpreter Lock affecting concurrency, stands out for its simplicity and adaptability. It is a popular choice for rapid prototyping, data-driven applications, and educational software development. 

C#, used alongside Xamarin, faces challenges related to file sizes and some native limitations. Despite this, its capacity to target both iOS and Android users with a single codebase makes it a worthwhile consideration for businesses. 

Objective-C, while losing its relevance to Swift, remains a viable option, especially for transitioning to modern iOS development while leveraging existing codebases. 

React Native, a JavaScript and JSX framework, is lauded for its hot-reload feature and its capability for cross-platform development, despite challenges with the integration of native modules and performance optimization. The framework’s cost-efficiency and the ability for the same code to be used for Android and iOS platforms make it attractive for businesses. Its large and supportive developer community continuously works on improving the framework, making it a compelling choice in the evolving digital landscape.

Flutter Programming

Flutter, a primary concern is the relatively large file size of Flutter applications, which might hinder app performance, especially on devices with limited storage. There’s also the learning curve associated with Dart, as it’s not as widely used as JavaScript or Python. An advantage is its ability to create beautiful, highly customized user interfaces with ease thanks to its widget-based architecture. 

Future Possibilities

Looking forward, the future of mobile application development languages is ripe with exciting possibilities for innovation and advancements. Java, revered for its adaptability, stands ready to take on an integral role in developing sophisticated enterprise solutions. Its potential is not just limited to this; it also holds significant promise in contributing to the burgeoning technologies of the Internet of Things (IoT) and Artificial Intelligence (AI).

Java’s future looks optimistic, with anticipated advancements set to elevate its capabilities further. Enhanced support for modern features, potential synergy with emerging technologies such as Augmented Reality (AR) and Virtual Reality (VR), along with advancements in security and performance optimization, are all on the horizon. 

Swift, as the main language for iOS development, will continue to evolve, opening up a plethora of engaging prospects. It is expected to see enhancements in its features and even extend its usage beyond the realm of Apple devices. Swift’s potential integration with Augmented Reality (AR) and Virtual Reality (VR) technologies is sure to create a vibrant new dimension in the iOS app development ecosystem. 

social media icons

Kotlin, as the official language for Android development, may gain in prevalence even further, possibly surpassing Java in the near future. With continuous improvements in syntax simplification, enhanced interoperability, and broader adoption across various software development domains, Kotlin’s future looks bright and promising.

JavaScript, its destiny resides in the ongoing evolution of frameworks such as React Native. The language is projected to maintain its dominance in cross-platform development, supported by consistent advancements in User Interface (UI) frameworks and capabilities. 

Python, renowned for its versatility, is set to gain even more relevance, particularly in the fields of data science, machine learning, and AI applications. Its simplicity is a key factor in its suitability for rapid prototyping. As these domains continue to expand, Python’s role in mobile development is expected to become even more prominent. 

C#, especially when used with Xamarin and .NET, holds future potential in the realm of cross-platform development. It’s well-positioned to contribute to the creation of applications that target both iOS and Android users with a single codebase.

Objective-C is likely to remain relevant due to the extensive existing codebases and the transition period as developers adapt to newer languages. Potential scenarios include continued support for Objective-C in maintaining legacy apps, gradual migration to Swift, and the language potentially finding applications in specific use cases where its features prove advantageous.

React Native’s future is promising, driven by its cross-platform capabilities, rapid development features, and robust developer community. Anticipated advancements include improved performance and broader adoption across industries, ensuring its continued relevance in mobile app development.

Flutter’s future appears robust, with its capacity to streamline high-performance cross-platform applications from a single codebase. Ongoing improvements and strong community support position Flutter as a leading choice, potentially extending its reach into emerging technologies like AR and VR. As businesses increasingly adopt Flutter for efficient and versatile mobile app development, its trajectory points towards sustained prominence in the evolving landscape.

The future of mobile application development languages is characterized by continuous innovation, adaptability, and a significant role in shaping the next generation of mobile experiences. This rapidly evolving landscape is a testament to the power of these languages and their potential to transform the mobile app development ecosystem. As the demand for high-quality, user-friendly mobile applications continues to rise, it is clear that these languages will play a vital role in meeting those needs and driving innovation in the industry. With ongoing updates and advancements, developers can look forward to an exciting future filled with endless possibilities.

What Are the Real Differences?: Spotify and Apple Music Compared

Portable music has evolved over the last four decades, from the invention of the Walkman in 1979 to the discontinuation of Apple’s iPod in 2022, as smartphones are now the preferred choice of listening to music. If you’ve ever put on a pair of headphones to listen to music on-the-go, or connected your phone to your car, it’s likely that you’re opening your favorite music streaming app on your phone and pressing “play”. The two main players in this space are Spotify and Apple Music. But what are the differences?

DIFFERENCES IN STREAMING

Spotify currently offers over 82 million songs while Apple Music offers over 100 million songs. Both services provide songs in any genre, from almost any country imaginable. Depending on one’s plan, songs can be saved to their music libraries and accessed both online and offline. Users can also create their own custom playlists. Spotify has an edge and allows the option to create collaborative playlists between its users, who are primarily younger adults.

Spotify tracks the types of music their users listen to and create personalized playlists based on their listenings. Earlier this year they released the DJ, a personalized AI guide that knows their users music tastes and chooses what to play. Similar to Spotify, Apple Music’s algorithm curates songs based on users’ listening habits. Apple Music also allows users to ask Siri to put on a song, genre, or artist of their choice which adds a layer of convenience.

For that time when you have a song stuck in your head, but can’t remember its name, both services allow users to search for a song based on lyrics alone. They also both display a song’s lyrics while playing.

DIFFERENCES FOR PODCASTS

Maybe you’re about to put on the highly-anticipated new episode of your favorite podcast– here are the differences?

Conveniently, Spotify hosts all of its podcasts within the same app as its music. Users can preview an episode of the podcast by accessing the “Podcasts and Shows” section of its app. Here, a user’s favorite podcasts (and new episodes of the podcast) will appear first, followed by algorithm-based recommendations. It’s easy to search for a podcast or show in the search bar, as well.

While Apple shares similar features to Spotify, it separates podcasts from Apple Music within a separate app – Apple Podcasts. This is something to take into consideration if you prefer having one central app for your listening needs.

DIFFERENCES IN SOUND QUALITY

Both Spotify and Apple Music stream in high quality, but Apple Music offers the option (at no extra cost) to listen to its entire inventory in lossless audio compression. The majority of audio compression techniques lose some data from the original source file. Lossless compression preserves all of the data. Spotify does not offer its entire catalog in lossless audio.

Apple Music offers listening in Dolby Atmos which creates a three-dimensional audio experience through compatible stereo headphones and speakers. Select tracks and albums are identified by the Dolby Atmos badge (two semi-circles facing one another).

Spotify has a graphic equalizer (EQ) setting that allows users to customize their sound by changing bass effects. Apple Music has an equalizer as well and can be accessed through your device’s (Settings > Music > Audio > EQ). Currently, there is no equalizer in Apple Music for Android.

HOW MUCH DOES IT COST?

Cost is a factor that can’t be ignored. On July 24, 2023, Spotify announced that it would be increasing its subscription pricing for the first time since 2011. Its Premium prices, which started at $9.99, are now the same as Apple Music’s (aside from a couple of differing plan options).

Spotify Pricing (as of July 24, 2023):

  • Premium Individual – $10.99/month (previously $9.99/month)
  • Premium Duo (allows for two users under one plan, designed with couples in mind)- $14.99/month
  • Premium Family (allows for up to six users, residing at the same address, under one account) – $16.99/month
  • Premium Student – $5.99/month

Apple Music Pricing

  • Voice – $4.99/month
  • Individual – $10.99/month
  • Family (allows for up to six users, in the same region, under one account) – $16.99/month
  • Student – $5.99/month

What about free options? Spotify offers a free service with ads and a limited number of skips for songs. Apple Music does not offer a free service, but does offer free trials to its plans. Its lowest plan is Voice, which has limitations such as the ability to download songs to your library for offline listening.

HOW MANY WAYS CAN YOU LISTEN?

Apple Music and Spotify are found in the iOS and Android app stores. However, currently Spotify is available on more platforms than Apple Music. Spotify users can currently be accessed through Mac OS, Windows, iOS, Android, tablets, and TVs. A number of car companies have a builtin Spotify feature, like Jaguar Land Rover, Volvo, BMW, MINI, TESLA, and GMC. Spotify is also accessible through Apple CarPlay.

Spotify has seamless cross-device playing, allowing users to play music in “Multi Mode” from the app when connected to a speaker or other audio system through WiFi. “Multi Mode” connects multiple speakers to play synchronized music simultaneously.

Apple Music is currently available on iTunes, iOS, Android, and Apple CarPlay. The ability to cross-play from any device exists for Apple Music as well, as long as the devices are all under the same Apple ID.

Both Spotify and Apple Music offer desktop listening. Spotify’s streaming service was available on desktop before its mobile app was created. It’s available for Windows and Mac. Recently, in June 2023, Spotify made some key changes to its desktop version to improve user experience. Notably, “Your Library” is on the left-hand side of the app and makes it easier to find and switch between playlists. “Now Playing” is on the right-hand side. Also in this panel are artist info (depending on the song), possible tour dates and merch links, as well as the current queue. Both of these panels are adjustable by size.

Apple Music’s desktop app features its “Listen Now”, “Browse”, “Radio”, “Library”, and “Playlists” options in its side bar, which can be adjusted to become more compact in size. Apple Music also has a mini player option. Another convenient feature of Apple Music is that it houses songs previously saved in an iCloud Music Library in the app library. Apple Music is available and fully supported for Mac, but its Windows desktop app is a “preview” or native app. Apple Music for Windows does not have all of the features as Apple Music for Mac. Some Windows users have also reported that the search feature is slower in the native app than the supported app or online version.

SOCIAL MEDIA

Anyone that opens their Instagram, Facebook, or Twitter near the end of each year, will likely see different Wrapped playlists all over their friends’ stories or posts. Spotify holds a larger social media presence than Apple Music. Spotify has 10.2M Instagram followers, 12M Twitter followers, and 23M Facebook Likes. Spotify is consistently posting across its platforms for new song releases, artist updates, top track lists, artist interviews, and memes. Its social media pages primarily target Gen Z and Millenials.

Apple Music has 4.6M Instagram followers, 10.2M Twitter followers, and 3.9M Facebook Likes. Its Instagram and Facebook numbers are significantly lower than Spotify’s. Apple Music also posts frequently and shares artist interviews, new song releases, and exclusive content. Its pages target a wider audience. The posts aren’t geared towards just young adults but older adults, as well.

TAKEAWAYS

Both services share similarities when it comes to the music selection offered, though Apple Music hosts about 20 million more songs than Spotify. Both allow for saving songs to libraries, creating playlists, searching for songs by lyrics, and lyric display per song. Spotify, available through more platforms, has an equalizer, has podcasts within the app and an ad-based free option. Apple Music hosts podcasts separately but has lossless compression and Dolby Atmos options for its sound. Apple Music has an equalizer for iOS and Mac devices only.

Spotify has a desktop app that is designed for both Windows and Mac and improves the app for user functionality. Apple Music’s desktop app is not fully compatible with Windows and is in its native phase, which has caused some users to complain. Spotify also has a greater social media presence than Apple Music, as its target audience is young adults.

When it comes down to picking your streaming platform, it may be because you prefer one type of device over the other, you favor a certain type of sound quality, or a specific functionality feature sticks out to you. All in all both platforms are great and will certainly be increasing their libraries and functionalities as time moves on.

How Apple & Google Are Enhancing Battery Life and What We as App Developers Can Do to Help

In 1799, Italian physicist Alessandro Volta created the first electrical battery, disproving the theory that electricity could only be created by human beings. Fast forward 250 years, brands like Duracell and Energizer popularized alkaline batteries—which are effective, inexpensive and soon become the key to powering household devices. In 1991, Sony released the first commercial rechargeable lithium-ion battery. Although lithium-ion batteries have come a long way since the 90s, to this day they power most smartphones and many other modern devices.

While batteries have come a long way, so have the capabilities of the devices which need them. For consumers, battery life is one of the most important features when purchasing hardware. Applications which drain a device’s battery are less likely to retain their users. Software developers are wise to understand the latest trends in battery optimization in order to build more efficient and user-friendly applications.

HARDWARE

Lithium-ion batteries remain the most prevalent battery technology, but a new technology lies on the horizon. Graphene batteries are similar to traditional batteries, however, the composition of one or both electrodes differ. Graphene batteries increase electrode density and lead to faster cycle times as well as the ability to improve a battery’s lifespan. Samsung is allegedly developing a smartphone powered by a graphene battery that could fully charge its device within 30 minutes. Although the technology is thinner, lighter, and more efficient, production of pure graphene batteries can be incredibly expensive, which may inhibit its proliferation in the short-term.

Hardware companies are also coming up with less technologically innovative solutions to improve battery life. Many companies are simply attempting to cram larger batteries into devices. A more elegant solution is the inclusion of multiple batteries. The OnePlus 9 has a dual cell battery. Employing multiple smaller batteries means both batteries charge faster than a single cell battery.

SOFTWARE

Apple and Google are eager to please their end-users by employing techniques to help optimize battery life. In addition, they take care to keep app developers updated with the latest techniques via their respective developer sites.

Android 11 includes a feature that allows users to freeze apps when they are cached to prevent their execution. Android 10 introduced a “SystemHealthManager” that resets battery usage statistics whenever the device is unplugged, after a device is fully charged or goes from being mostly empty to mostly charged—what the OS considers a “Major charging event”.

Apple has a better track record of consuming less battery than Android. iOS 13 and later introduced Optimized Battery Charging, enabling iPhones to learn from your daily charging routine to improve battery lifespan. The new feature prevents iPhones from charging up to 100% to reduce the amount of time the battery remains fully charged. On-site machine learning then ensures that your battery is fully charged by the time the user wakes up based on their daily routines.

Apple also offers a comprehensive graph for users to understand how much battery is being used by which apps, off screen and on screen, under the Battery tab of each devices Settings.

WHAT APPLICATION DEVELOPERS CAN DO

App developers see a 73% churn rate within the first 90 days of downloading an app, leaving very little room for errors or negative factors like battery drainage. There are a number of techniques application developers can employ in their design to reduce and optimize battery-intensive processes.

It’s vital to review each respective app store’s battery saving standards. Both Android and Apple offer a variety of simple yet vital tips for reducing battery drain—such as limiting the frequency that an app asks for a device’s location and inter-app broadcasting.

One of the most important tips is to reduce the frequency of network refreshes. Identify redundant operations and cut them out. For instance, can downloaded data be cached rather than using the radio repeatedly to re-download it? Are there tasks that can be deferred by the app until the device is charging? Backing up data to the cloud can consume a lot of battery on a task that is not always time sensitive.

Wake locks keep the phone’s screen on when using an app. There was a time where wake locks were frequently employed—but now it is frowned upon. Use wake locks only when absolutely necessary—if at all.

CONCLUSION

Software developers need to be attentive to battery drain throughout the process of building their application. This begins at conception, through programming, all the way into a robust testing process to identify potential battery drainage pitfalls. Attention to the details of battery optimization will lead to better, more user-friendly applications.

The Top In-App Purchase Tactics for 2022

According to Sensor Tower, consumers spent $111 billion on in-app purchases, subscriptions, and premium apps in 2020 on the Apple App Store and Google Play Store. How can your app take advantage to maximize revenue? Every app is different and begets a unique answer to the all important question: What’s the best way to monetize?

App Figures recently published a study which showed only 5.9% of Apple App Store apps are paid, compared to a paltry 3.7% on Google Play. Thus, the freemium model reigns supreme—according to app sales statistics, 48.2% of all mobile app revenue derives from in-app purchases.

When creating an in-app purchase ecosystem, many psychological and practical considerations must be evaluated. Below, please find the best practices for setting in-app purchase prices in 2022.

BEHAVIORAL ECONOMICS

Behavioral economics is a method of economic analysis that applies psychological insights into human behavior to explain economic decision-making. Creating an in-app purchase ecosystem begins with understanding and introducing the psychological factors which incentivize users to make purchases. For example, the $0.99 pricing model banks on users perceiving items that cost $1.99 to be closer to a $1 price point than $2. Reducing whole dollar prices by one cent is a psychological tactic proven to be effective for both in-app purchases and beyond.

Another psychological pricing tactic is to remove the dollar sign or local currency symbol from the IAP storefront and employ a purchasable in-app currency required to purchase IAPs. By removing the association with real money, users see the value of each option on a lower stakes scale. Furthermore, in-app currencies can play a major role in your retention strategy.

ANCHORING

Anchoring is a cognitive bias where users privilege an initial piece of information when making purchasing decisions. Generally, this applies to prices—app developers create a first price point as an anchoring reference, then slash it to provide users with value. For example, an in-app purchase might be advertised at $4.99, then slashed to $1.99 (60% off) for a daily deal. When users see the value in relation to the initial price point, they become more incentivized to buy.

Anchoring also relates to the presentation of pricing. We have all seen bundles and subscriptions present their value in relation to higher pricing tiers. For example, an annual subscription that’s $20/year, but advertised as a $36 value in relation to a monthly subscription price of $2.99/month. In order for your users to understand the value of a purchase, you have to hammer the point home through UI design.

OPTIMIZE YOUR UI

UI is very important when it comes to presenting your in-app purchases. A well-designed monetization strategy can be made moot by insufficient UI design. Users should always be 1-2 taps away from the IAP storefront where they can make purchases. The prices and discounts of each pricing option should be clearly delineated on the storefront.

Furthermore, make sure you are putting your best foot forward with how you present your prices. Anchoring increases the appeal of in-app purchases, but in order for the user to understand the deal, you have to highlight the value in your UI design by advertising it front and center in your IAP UI.

OFFER A VARIETY OF CHOICES

There are a number of IAPs trending across apps. In order to target the widest variety of potential buyers, we recommend offering a variety of options. Here are a few commonly employed options:

  • BUNDLES: Offer your IAPs either à la carte or as a bundle for a discount. Users are always more inclined to make a bigger purchase when they understand they are receiving an increased value.
  • AD FREE: Offer an ad-free experience to your users. This is one of the more common tactics and die-hard users will often be willing to pay to get rid of the ad experience.
  • SPECIAL OFFERS: Limited-time offers with major discounts are far more likely to attract user attention. Special offers create a feeling of scarcity as well as instill the feeling of urgency. Consider employing holiday specials and sending personalized push notifications to promote them.
  • MYSTERY BOX: Many apps offer mystery boxes—bundles often offered for cheap that contain a random assortment of IAPs. Users may elect to take a chance and purchase in hopes of receiving a major reward.

While offering users a variety of choices for IAPs is key, having too many choices can cause analysis paralysis and be stultifying to users. Analysis paralysis is when users are hesitant to make an in-app purchase because they’ve been given too many options. Restrict your IAPs to the most appealing options to make decisions easy for your users.

TESTING IS KEY

As with any component of app development, testing is the key to understanding your audience and refining your techniques. We recommend testing your app with a random user group and taking their feedback as well as having them fill out a questionnaire. A/B Testing, or split-run testing, consists of testing two different user groups with two different app experiences. A/B testing enables app developers to see how users react to different experiences and to evaluate what tactics are most user-effective.

There are many tactics to help incentivize users to make that big step and invest capital in an app. Savvy developers innovate every day—stay tuned on the latest trends to keep your in-app purchase strategy on the cutting edge.

LiDAR: The Next Revolutionary Technology and What You Need to Know

In an era of rapid technological growth, certain technologies, such as artificial intelligence and the internet of things, have received mass adoption and become household names. One up-and-coming technology that has the potential to reach that level of adoption is LiDAR.

WHAT IS LIDAR?

LiDAR, or light detection and ranging, is a popular remote sensing method for measuring the exact distance of an object on the earth’s surface. Initially used in the 1960s, LiDAR has gradually received increasing adoption, particularly after the creation of GPS in the 1980s. It became a common technology for deriving precise geospatial measurements.

LiDAR requires three components: the scanner, laser, and GPS receiver. The scanner sends a pulsed laser to the GPS receiver to calculate an object’s variable distances from the earth surface. The laser emits light which travels to the ground and reflects off things like buildings, tree branches and more. The reflected light energy then returns to the LiDAR sensor where the associated information is recorded. In combination with photodetector and optics, it allows for an ultra-precise distance detection and topographical data.

WHY IS LIDAR IMPORTANT?

As we covered in our rundown of the iPhone 12, new iOS devices come equipped with a brand new LiDAR scanner. LiDAR now enters the hands of consumers who have Apple’s new generation of devices, enabling enhanced functionality and major opportunities for app developers. The proliferation of LiDAR signals toward the technology finding mass adoption and household name status.

There are two different types of LiDAR systems: Terrestrial and Airborne. Airborne LiDAR are installed on drones or helicopters for deriving an exact measurement of distance, while Terrestrial LiDAR systems are installed on moving vehicles to collect pinpoints. Terrestrial LiDAR systems are often used to monitor highways and have been employed by autonomous cars for years, while airborne LiDAR are commonly used in environmental applications and gathering topographical data.

With the future in mind, here are the top LiDAR trends to look out for moving forward:

SUPERCHARGING APPLE DEVICES

LiDAR enhances the camera on Apple devices significantly. Auto-focus is quicker and more effective on those devices. Moreover, it supercharges AR applications by greatly enhancing the speed and quality of a camera’s ability to track the location of people as well as place objects.

One of the major apps that received a functionality boost from LiDAR is Apple’s free Measure app, which can measure distance, dimensions, and even whether an object is level. The measurements determined by the app are significantly more accurate with the new LiDAR scanner, capable of replacing physical rulers, tape measures, and spirit levels.

Microsoft’s Seeing AI application is designed for the visually impaired to navigate their environment, however, LiDAR takes it to the next level. In conjunction with artificial intelligence, LiDAR enables the application to read text, identify products and colors, and describe people, scenes, and objects that appear in the viewfinder.

BIG INVESTMENTS BY AUTOMOTIVE COMPANIES

LiDAR plays a major role in autonomous vehicles, relying on a terrestrial LiDAR system to help them self-navigate. In 2018, reports suggest that the automotive segment acquired a business share of 90 percent. With self-driving cars inching toward mass adoption, expect to see major investments in LiDAR by automotive companies in 2021 and beyond.

As automotive companies look to make major investments in LiDAR, including Volkswagen’s recent investment in Aeva, many LiDAR companies are competing to create the go-to LiDAR system for automotive companies. Check out this great article by Wired detailing the potential for this bubble to burst.

LIDAR DRIVING ENVIRONMENTAL APPLICATIONS

Beyond commercial applications and the automotive industry, LiDAR is gradually seeing increased adoption for geoscience applications. The environmental segment of the LiDAR market is anticipated to grow at a CAGR of 32% through 2025. LiDAR is vital to geoscience applications for creating accurate and high-quality 3D data to study ecosystems of various wildlife species.

One of the main environmental uses of LiDAR is for soliciting topographic information on landscapes. Topographic LiDAR is expected to see a growth rate of over 25% over the coming years. These systems can see through forest canopy to produce accurate 3D models of landscapes necessary to create contours, digital terrain models, digital surface models and more.

CONCLUSION

In March 2020, after the first LiDAR scanner became available in the iPad Pro, The Verge put it perfectly when they said that the new LiDAR sensor is an AR hardware solution in search of software. While LiDAR has gradually found increasing usage, it is still a powerful new technology with burgeoning commercial usage. Enterprising app developers are looking for new ways to use it to empower consumers and businesses alike.

For supplementary viewing on the inner workings of the technology, check out this great introduction below, courtesy of Neon Science.

Learn More About Triggering Augmented Reality Experiences with AR Markers

We expect a continued increase in the utilization of AR in 2021. The iPhone 12 contains LiDAR technology, which enables the use of ARKit 4, greatly enhancing the possibilities for developers. When creating an AR application, developers must consider a variety of methods for triggering the experience and answer several questions before determining what approach will best facilitate the creation of a digital world for their users. For example, what content will be displayed? Where will this content be placed, and in what context will the user see it?

Markerless AR can best be used when the user needs to control the placement of the AR object. For example, the IKEA Place app allows the user to place furniture in their home to see how it fits.

1_0RtFp6lxeJWxcg5EE_wYCg

Location-based AR roots an AR experience to a physical space in the world, as we explored previously in our blog Learn How Apple Tightened Their Hold on the AR Market with the Release of ARKit 4. ARKit 4 introduces Location Anchors, which enable developers to set virtual content in specific geographic coordinates (latitude, longitude, and altitude). To provide more accuracy than location alone, location anchors also use the device’s camera to capture landmarks and match them with a localization map downloaded from Apple Maps. Location anchors greatly enhance the potential for location-based AR; however, the possibilities are limited within the 50 cities which Apple has enabled them.

Marker-based AR remains the most popular method among app developers. When an application needs to know precisely what the user is looking at, accept no substitute. In marker-based AR, 3D AR models are generated using a specific marker, which triggers the display of virtual information. There are a variety of AR markers that can trigger this information, each with its own pros and cons. Below, please find our rundown of the most popular types of AR markers.

FRAMEMARKERS

5fc9da7d2761437fecd89875_1_gXPr_vwBWmgTN5Ial7Uwhg

The most popular AR marker is a framemarker, or border marker. It’s usually a 2D image printed on a piece of paper with a prominent border. During the tracking phase, the device will search for the exterior border in order to determine the real marker within.

Framemarkers are similar to QR Codes in that they are codes printed on images that require handheld devices to scan, however, they trigger AR experiences, whereas QR codes redirect the user to a web page. Framemarkers are a straightforward and effective solution.

absolut-truths

Framemarkers are particularly popular in advertising applications. Absolut Vodka’s Absolute Truth application enabled users to scan a framemarker on a label of their bottle to generate a slew of more information, including recipes and ads.

GameDevDad on Youtube offers a full tutorial of how to create framemarkers from scratch using Vuforia Augmented Reality SDK below.

 

NFT MARKERS

?????????

NFT, or Natural Feature Tracking, enable camera’s to trigger an AR experience without borders. The camera will take an image, such as the one above, and distill down it’s visual properties as below.

AugementedRealityMarkerAnymotionFeatures

The result of processing the features can generate AR, as below.

ImEinsatz

The quality and stability of these can oscillate based on the framework employed. For this reason, they are less frequently used than border markers, but function as a more visually subtle alternative. A scavenger hunt or a game employing AR might hide key information in NFT markers.

Treasury Wine Estates Living Wine Labels app, displayed above, tracks the natural features of the labels of wine bottles to create an AR experience which tells the story of their products.

OBJECT MARKERS

image1-7

The  toy car above has been converted into an object data field using Vuforia Object Scanner.

image4-1

Advancements in technology have enabled mobile devices to solve the issue of SLAM (simultaneous localization and mapping). The device camera can extract information in-real time, and use it to place a virtual object in it. In some frameworks, objects can become 3D-markers. Vuforia Object Scanner is one such framework, creating object data files that can be used in applications for targets. Virtual Reality Pop offers a great rundown on the best object recognition frameworks for AR.

RFID TAGS

Although RFID Tags are primarily used for short distance wireless communication and contact free payment, they can be used to trigger local-based virtual information.

While RFID Tags are not  widely employed, several researchers have written articles about the potential usages for RFID and AR. Researchers at the ARATLab at the National University of Singapore have combined augmented reality and RFID for the assembly of objects with embedded RFID tags, showing people how to properly assemble the parts, as demonstrated in the video below.

SPEECH MARKERS

Speech can also be used as a non-visual AR marker. The most common application for this would be for AR glasses or a smart windshield that displays information through the screen requested by the user via vocal commands.

CONCLUSION

Think like a user—it’s a staple coda for app developers and no less relevant in crafting AR experiences. Each AR trigger offers unique pros and cons. We hope this has helped you decide what is best equipped for your application.

In our next article, we will explore the innovation at the heart of AIoT, the intersection of AI and the Internet of Things.

Learn How Apple Tightened Their Hold on the AR Market with the Release of ARKit 4

Since the explosive launch of Pokemon Go, AR technologies have vastly improved. Our review of the iPhone 12 concluded that as Apple continues to optimize its hardware, AR will become more prominent in both applications and marketing.

At the 2020 WWDC in June, Apple announced ARKit 4, their latest iteration of the famed augmented reality platform. ARKit 4 features some vast improvements that help Apple tighten their hold on the AR market.

LOCATION ANCHORS

ARKit 4 introduces location anchors, which allow developers to set virtual content in specific geographic coordinates (latitude, longitude, and altitude). When rebuilding the data backend for Apple Maps, Apple collected camera and 3D LiDAR data from city streets across the globe. ARKit downloads the virtual map surrounding your device from the cloud and matches it with the device’s feed to determine your location. The kicker is: all processing happens using machine learning within the device, so your camera feed stays put.

36431-67814-ARKit-xl

Devices with an A12 chip or later, can run Geo-tracking; however, location anchors require Apple to have mapped the area previously. As of now, they are supported in over 50 cities in the U.S. As the availability of compatible devices increases and Apple continues to expand its mapping project, location anchors will find increased usage.

DEPTH API

ARKit’s new Depth API harnesses the LiDAR scanner available on iPad Pro and iPhone 12 devices to introduce advanced scene understanding and enhanced pixel depth information in AR applications. When combined with 3D mesh data derived from Scene Geometry, which creates a 3D matrix of readings of the environment, the Depth API vastly improves virtual object occlusion features. The result is the instant placement of digital objects and seamless blending with their physical surroundings.

FACE TRACKING

1_tm5vrdVDr2DAulgPvDMRow

Face tracking has found an exceptional application in Memojis, which enables fun AR experiences for devices with a TrueDepth camera. ARKit 4 expands support to devices without a camera that has at least an A12. TrueDepth cameras can now leverage ARKit 4 to track up to three faces at once, providing many fun potential applications for Memojis.

VIDEO MATERIALS WITH REALITYKIT

b3b1c224-5db5-4e38-97de-76f90c32b53a

ARKit 4 also brings with it RealityKit, which adds support for applying video textures and materials to AR experiences. For example, developers will be able to place a virtual television on a wall, complete with realistic attributes, including light emission, texture roughness, and even audio. Consequentially, AR developers can develop even more immersive and realistic experiences for their users.

CONCLUSION

iOS and Android are competing for supremacy when it comes to AR development. While the two companies’ goals and research overlap, Apple has a major leg up on Google in its massive base of high-end devices and its ability to imbue them with the necessary structure sensors like TrueDepth and LiDAR.

ARKit has been the biggest AR development platform since it hit the market in 2017. ARKit 4 provides the technical capabilities tools for innovators and creative thinkers to build a new world of virtual integration.

How App Developers Can Leverage the iPhone 12 to Maximize Their Apps

On October 23rd, four brand new iPhone 12 models were released to retailers. As the manufacturer of the most popular smartphone model in the world, whenever Apple delivers a new device its front-page news. Mobile app developers looking to capitalize on new devices must stay abreast of the latest technologies, how they empower applications, and what they signal about where the future of app development is headed.

With that in mind, here is everything app developers need to know about the latest iPhone models.

BIG DEVELOPMENTS FOR AUGMENTED REALITY

LiDAR is a method for measuring distances (ranging) by illuminating the target with laser light and measuring the reflection with a sensor
LiDAR is a method for measuring distances (ranging) by illuminating the target with laser light and measuring the reflection with a sensor

On a camera level, the iPhone 12 includes significant advancements. It is the first phone to record and edit Dolby Vision with HDR. What’s more, Apple has enhanced the iPhone’s LiDAR sensor capabilities with a third telephoto lens.

The opportunities for app developers are significant. For AR developers, this is a breakthrough—enhanced LiDAR on the iPhone 12 means a broad market will have access to enhanced depth perception, enabling smoother AR object placement. The LIDAR sensor produces a 6x increase in autofocus speed in low light settings.

The potential use cases are vast. An enterprise-level application could leverage the enhanced camera to show the inner workings of a complex machine and provide solutions. Dimly lit rooms can now house AR objects, such as Christmas decorations. The iPhone 12 provides a platform for AR developers to count on a growing market of app users to do much more with less light, and scan rooms with more detail.

The iPhone 12’s enhanced LiDAR Scanner will enable iOS app developers to employ Apple’s ARKit 4 to attain enhanced depth information through a brand-new Depth API. ARKit 4 also introduces location anchors, which enable developers to place AR experiences at a specific point in the world in their iPhone and iPad apps.

With iPhone 12, Apple sends a clear message to app developers: AR is on the rise.

ALL IPHONE 12 MODELS SUPPORT 5G

5G 2

The entire iPhone 12 family of devices supports 5G with both sub-6GHz and mmWave networks. When iPhone 12 devices leverage 5G with the Apple A14 bionic chip, it enables them to integrate with IoT devices, and perform on ML algorithms at a much higher level.

5G poses an endless array of possibilities for app developers—from enhanced UX, more accurate GPS, improved video apps, and more. 5G will reduce dependency on hardware as app data is stored in the cloud with faster transfer speeds. In addition, it will enable even more potential innovation for AR applications.

5G represents a new frontier for app developers, IoT, and much more. Major carriers have been rolling out 5G networks over the past few years, but access points remain primarily in major cities. Regardless, 5G will gradually become the norm over the course of the next few years and this will expand the playing field for app developers.

WHAT DOES IT MEAN?

Beyond the bells and whistles, the iPhone 12 sends a very clear message about what app developers can anticipate will have the biggest impact on the future of app development: AR and 5G. Applications employing these technologies will have massive potential to evolve as the iPhone 12 and its successors become the norm and older devices are phased out.

How to Leverage AR to Boost Sales and Enhance the Retail Experience

The global market for VR and AR in retail will reach $1.6 billion by 2025 according to research conducted by Goldman Sachs. Even after years of growing popularity, effectively employed Augmented Reality experiences feel to the end-user about as explicitly futuristic as any experience created by popular technology.

We have covered the many applications for AR as an indoor positioning mechanism on the Mystic MediaTM blog, but when it comes to retail, applications for AR are providing real revenue boosts and increased conversion rates.

Augmented Reality (AR) History

Ivan Sutherland 1

While working as an associate professor at Harvard University, computer scientist Ivan Sutherland, aka the “Father of Computer Graphics”, created an AR head-mounted display system which constituted the first AR technology in 1968. In the proceeding decades, AR visual displays gained traction in universities, companies, and national agencies as a way to superimpose vital information on physical environments, showing great promise for applications for aviation, military, and industrial purposes.

Fast forward to 2016, the sensational launch of Pokemon GO changed the game for AR. Within one month, Pokemon GO reached 45 million users, showing there is mainstream demand for original and compelling AR experiences.

Cross-Promotions

Several big brands took advantage of Pokemon GO’s success through cross-promotions. McDonald’s paid for Niantic to turn 3,000 Japan locations into gyms and PokeStops, a partnership that has recently ended. Starbucks took advantage of Pokemon GO’s success as well by enabling certain locations to function as PokeStops and gyms, and offering a special Pokemon GO Frappucino.

One of the ways retailers can enter into the AR game without investing heavily in technology is to cross-promote with an existing application.

In 2018, Walmart launched a partnership with Jurassic World’s AR game: Jurassic World Alive. The game is similar to Pokemon GO, using a newly accessible Google Maps API to let players search for virtual dinosaurs and items on a map, as well as battle other players. Players can enter select Walmart locations to access exclusive items.

Digital-Physical Hybrid Experiences

The visual augmentation produced by AR transforms physical spaces by leveraging the power of computer-generated graphics, an aesthetic punch-up proven to increase foot traffic. While some retailers are capitalizing on these hybrid experiences through cross-promotions, others are creating their own hybrid experiential marketing events.

Foot Locker developed an AR app that used geolocation to create a scavenger hunt in Los Angeles, leading customers to the location where they could purchase a pair of LeBron 16 King Court Purple shoes. Within two hours of launching the app, the shoes sold out.

AR also has proven potential to help stores create hybrid experiences through indoor navigation. Users can access an augmented view of the store through their phones, which makes in-store navigation easy. Users scan visual markers, recognized by Apple’s ARKitGoogle’s ARCore, and other AR SDKs, to establish their position, and AR indoor navigation applications can offer specific directions to their desired product.

Help Consumers Make Informed Choices

Ikea Place Screenshots

AR is commonly employed to enrich consumers’ understanding of potential purchases and prompt them to buy. For example, the “IKEA Place” app allows shoppers to see IKEA products in a superimposed graphics environment. IKEA boasts the app gives shoppers 98% accuracy in buying decisions.

Converse employs a similar application, the “Converse Sampler App”, which enables users to view what a shoe will look like on their feet through their device’s camera. The application increases customer confidence, helping them make the decision to purchase.

Treasury Wines Estates enhances the consumer experience with “Living Wine Labels”: AR labels that bring the history of the vineyard to life and provide users with supplementary information, including the history of the vineyard the wine came from and tasting notes.

Conclusion

AR enables striking visuals that captivate customers. As a burgeoning tool, AR enables companies to get creative and build innovative experiences that capture their customers’ imagination. Retailers who leverage AR will seize an advantage both in the short term and in the long term as the technology continues to grow and evolve.

iOS 14 Revamps the OS While Android 11 Offers Minor Improvements

Every time Apple announces a new device or OS, it is a cultural event for both consumers and app developers. When Apple announced iOS 14 in June 2020 during the WWDC 2020 keynote, few anticipated it would be one of the biggest iOS updates to date. With a host of new features and UI enhancements, the release of iOS 14  has become one of the most hotly anticipated moments of this year in technology.

On the other side of the OS war, Android has released four developer previews in 2020 of their latest OS offering: Android 11. Currently, Android 11 is currently available in a beta release ahead of its target launch in August/September.

The two biggest OS titans have effectively upped the ante on their rivalry. Here is a summary everything you need to know on how they stack up against one another:

iOS 14

iOS 14 is a larger step forward for iOS than Android 11 is for Android. In relation to iOS 13, it revamps the iOS to become smarter and more user-friendly while streamlining group conversations.

While iMessage remains the most popular messaging platform on the market, competitors like WhatsApp, Discord and Signal include a variety of features previously unavailable on iOS devices. iOS 14 closes the gap with its competitors, offering a host of UI enhancements specifically targeting group conversations—one of the most popular features on iMessage:

imessage-ios14

  • Pinned Conversations: Pin the most important conversations to the top of your profile to make them easier to access.
  • Group Photos: iOS 14 enhances group conversations by allowing users to give group conversations a visual identity using a photo, Memoji, or emoji.
  • Mentions: Users can now directly tag users in their messages within group conversations. When a user is mentioned, their name will be highlighted in the text and users can customize notifications so that they only receive notifications when they are mentioned.
  • Inline Replies: Within group conversations, users can select a specific message and reply directly to it.

One of the major upgrades in iOS 14 is the inclusion of Widgets on the home screen. Widgets on the home screen have been redesigned to offer more information at a glance. They are also customizable to give the user more flexibility in how they arrange their home screen.

applibrary-1280x720

iOS 14 introduces the App Library, a program which automatically organizes applications into categories offering a simple, easy-to-navigate view. App Library helps make all of a user’s applications visible at once and allow users to customize how they’d like their applications to be categorized.

In addition to incorporating a variety of UI enhancements, iOS 14 is significantly smarter. Siri is equipped with 20x more facts than it had three years ago. iOS 14 improves language translation, offering 11 different languages. Users can download the languages based on what they will need to keep translations private without requiring an internet connection.

Apple has also introduced a number of UI enhancements to help make the most of screen real estate:

Apple_ios14-incoming-call-screen_06222020_inline.jpg.large

Compact Calls condense the amount of screen real estate occupied by phone calls from iPhone, FaceTime, and third-party apps, allowing users to continue viewing information on their screen both when a call comes in and when they are on a call.

picture in picture

Picture in Picture mode similarly allows users to condense their video display so that it doesn’t take up their entire screen, allowing the user to navigate their device without pausing their video call or missing part of a video that they are watching.

ANDROID 11

In comparison to iOS 14, Android 11 is not a major visual overhaul of the platform. However, it does offer an array of new features which enhance UI.

  • Android 11 introduces native screen recording, allowing users to record their screen. It is a useful feature already included in iOS, particularly helpful when demonstrating how applications work.
  • While recording videos, Android allows users to mute notifications which would otherwise cause the recording to stop.
  • Users can now modify the touch sensitivity of their screen, increasing or decreasing sensitivity to their liking.
  • Android 11 makes viewing a history of past notifications as easy as it has ever been using the Notification History button.
  • When users grant an Android app access to a permission, in the current OS, the decision is written in stone for all future usage. Based on this decision, the application will have permanent access, access during usage, or will be blocked. Android 11 introduces one-time permissions, allowing users to grant an application access to a permission once and requiring the question to be posed again the next time they open it.

IOS 14 VS. ANDROID 11

While Android offers a variety of small improvements, iOS 14 provides the iOS platform with a major visual overhaul. This year, it is safe to say that iOS 14 wins the battle for the superior upgrade. With both Android and iOS slated for a fall release, how users respond to the new OS’s remains to be seen.