Tag Archives: Application

How Zigbee Pro Makes Life Easier for IoT Developers

The IoT has proliferated our everyday lives in a growing variety of ways. In 2021, there were more than 10 billion active IoT devices. That number is expected to grow past 25.4 billion by 2030. IoT solutions will generate $4-11 trillion in economic value by 2025.

Hundreds of manufacturers create IoT devices of all varieties—interoperability is necessity. In order to facilitate this, IoT developers generally adhere to a communications protocol known as Zigbee Pro.

WHAT IS ZIGBEE PRO?

 

Zigbee Pro is a low power, low data rate Wireless Personal Area Network (WPAN) protocol which streamlines device connections. The goal of the protocol is to deliver a single communications standard that simplifies the nauseating array of proprietary APIs and wireless technologies used by IoT manufacturers.

Zigbee Pro is the latest in a line of protocols. The certification process is facilitated by the Zigbee Alliance—now commonly known as the Connectivity Standards Alliance—which formed in 2002. The Connectivity Standards developed the first version of Zigbee in 2004 and gradually rolled out improved versions until the most current version in 2014.

HOW DOES IT WORK?

Zigbee is composed of a number of layers that form a protocol stack. Each layer contributes functionality to the ones below it, making it easier for developers to deploy these functions without explicitly having to write them. The layers include a radio communication layer based on the IEEE standard 802.15.4, a network layer (Zigbee Pro), the application layer known as Dotdot, and the certification layer which is compliant with the Connectivity Standards Alliance.

One of the focuses of the Zigbee standard is to deliver low-power requirements. Battery powered devices must have a 2 year battery life in order to be certified.

ZIGBEE DEVICES

Mesh networking enables Zigbee networks to operate more consistently than WiFi and Bluetooth. Each device on the network becomes a repeater, which ensures that losing one device won’t affect the other devices in the mesh.

There are three classes of Zigbee devices:

Zigbee Coordinator – The coordinator forms the root of the network tree, storing information about the network and functioning as a repository for security keys. This is generally the hub, bridge, or smart home controller—such as the app from which you control your smart home.

Zigbee Router – The router can run application functions as well as act as an intermediate router to pass data on to other devices. The router is generally a typical IoT device, such as a powered lightbulb.

Zigbee End Device – This is the simplest type of device—requiring the least power and memory to perform the most basic functions. It cannot relay data and its simplicity enables it to be asleep the majority of the time. An example of an end device would be a smart switch or a sensor that only sends a notification when a specific event occurs.

The Zigbee Pro protocol has become the gold standard for IoT developers. Many commercial IoT apps and smart home controllers function under the Zigbee Pro protocol. Examples include: Samsung SmartThings Hub, Amazon Echo, and the Philips Hue Bridge.

How Apple & Google Are Enhancing Battery Life and What We as App Developers Can Do to Help

In 1799, Italian physicist Alessandro Volta created the first electrical battery, disproving the theory that electricity could only be created by human beings. Fast forward 250 years, brands like Duracell and Energizer popularized alkaline batteries—which are effective, inexpensive and soon become the key to powering household devices. In 1991, Sony released the first commercial rechargeable lithium-ion battery. Although lithium-ion batteries have come a long way since the 90s, to this day they power most smartphones and many other modern devices.

While batteries have come a long way, so have the capabilities of the devices which need them. For consumers, battery life is one of the most important features when purchasing hardware. Applications which drain a device’s battery are less likely to retain their users. Software developers are wise to understand the latest trends in battery optimization in order to build more efficient and user-friendly applications.

HARDWARE

Lithium-ion batteries remain the most prevalent battery technology, but a new technology lies on the horizon. Graphene batteries are similar to traditional batteries, however, the composition of one or both electrodes differ. Graphene batteries increase electrode density and lead to faster cycle times as well as the ability to improve a battery’s lifespan. Samsung is allegedly developing a smartphone powered by a graphene battery that could fully charge its device within 30 minutes. Although the technology is thinner, lighter, and more efficient, production of pure graphene batteries can be incredibly expensive, which may inhibit its proliferation in the short-term.

Hardware companies are also coming up with less technologically innovative solutions to improve battery life. Many companies are simply attempting to cram larger batteries into devices. A more elegant solution is the inclusion of multiple batteries. The OnePlus 9 has a dual cell battery. Employing multiple smaller batteries means both batteries charge faster than a single cell battery.

SOFTWARE

Apple and Google are eager to please their end-users by employing techniques to help optimize battery life. In addition, they take care to keep app developers updated with the latest techniques via their respective developer sites.

Android 11 includes a feature that allows users to freeze apps when they are cached to prevent their execution. Android 10 introduced a “SystemHealthManager” that resets battery usage statistics whenever the device is unplugged, after a device is fully charged or goes from being mostly empty to mostly charged—what the OS considers a “Major charging event”.

Apple has a better track record of consuming less battery than Android. iOS 13 and later introduced Optimized Battery Charging, enabling iPhones to learn from your daily charging routine to improve battery lifespan. The new feature prevents iPhones from charging up to 100% to reduce the amount of time the battery remains fully charged. On-site machine learning then ensures that your battery is fully charged by the time the user wakes up based on their daily routines.

Apple also offers a comprehensive graph for users to understand how much battery is being used by which apps, off screen and on screen, under the Battery tab of each devices Settings.

WHAT APPLICATION DEVELOPERS CAN DO

App developers see a 73% churn rate within the first 90 days of downloading an app, leaving very little room for errors or negative factors like battery drainage. There are a number of techniques application developers can employ in their design to reduce and optimize battery-intensive processes.

It’s vital to review each respective app store’s battery saving standards. Both Android and Apple offer a variety of simple yet vital tips for reducing battery drain—such as limiting the frequency that an app asks for a device’s location and inter-app broadcasting.

One of the most important tips is to reduce the frequency of network refreshes. Identify redundant operations and cut them out. For instance, can downloaded data be cached rather than using the radio repeatedly to re-download it? Are there tasks that can be deferred by the app until the device is charging? Backing up data to the cloud can consume a lot of battery on a task that is not always time sensitive.

Wake locks keep the phone’s screen on when using an app. There was a time where wake locks were frequently employed—but now it is frowned upon. Use wake locks only when absolutely necessary—if at all.

CONCLUSION

Software developers need to be attentive to battery drain throughout the process of building their application. This begins at conception, through programming, all the way into a robust testing process to identify potential battery drainage pitfalls. Attention to the details of battery optimization will lead to better, more user-friendly applications.

Part 3: Techniques to Keep Users Coming Back & Increase Retention

How Gamification Can Boost Retention on Any App Part 3: Techniques to Keep Users Coming Back & Increase Retention

The Mystic Media Blog is currently endeavoring on a 3 part series on how gamification mechanics can boost retention on any app—not just gaming apps but utility apps, business apps and more. In this third entry, we explore additional techniques to keep users coming back and increase retention.

Your users have downloaded your app and are acclimated with its features. You’ve perfected your core loop to ensure users can complete meaningful actions in the app on a daily basis. Now the question becomes—how can you retain ongoing usage? The average cost to acquire a mobile app user is $4, yet retention rates can quickly drop from there. Statistics show that a 5% increase in retention can boost profitability by up to 75%.

There are a variety of techniques employed by mobile games that app developers can use in their non-gaming apps to keep users engaged long after the application ends.

INVEST IN THE FUTURE

An optimized application development process requires thinking about how your product can evolve beyond the initial release. Often this is due to schedule and budgetary constraints. It is natural in any creative endeavor to have more ideas than time and money to complete them. However, thinking long-term can be an advantage. New features entice users to continue using the application after download and to allow push notifications for fear of missing out on updates.

Mobile games often have to confront this since the amount of content they offer is finite—a certain amount of levels, achievements, and unlockables which can be completed. Games can offer additional modes and levels to entice users to come back. Similarly, non-gaming apps can offer new content—such as informative blogs, new features, and new product lines.

During the development process, plan out multiple phases and deliver new features and content updates on a regular basis. If you have a blog, host it on your application and keep users coming back for content updates.

IMPLEMENT SOCIAL FEATURES

Game developers know that “Socializers”, or users who thrive on social interaction, constitute one of the most important Bartle Types. Social features are crucial not only to retaining interest and daily usage of an application, but as a marketing technique to encourage users to engage with one another and spread the word. Once your userbase is established, implementing social features will increase engagement.

Consider implementing the following social features in phase 2 of your application:

  • Customizable user profiles: Enabling usernames, profile pictures, bios and other user customization features help users feel more connected to the app vis a vis their profile.
  • Rewarded social sharing: Encourage users to spread the love by rewarding them with discounts and reward points when they share to social media.
  • Likes and comments on products: Implementing comments and likes not only gives users another avenue for engagement, it creates a platform for automated push notifications that will likely result in more daily opens.
  • Follow and friend other users: Allowing users to connect can result in meaningful social relationships which will increase their connection with your application.
  • Rewarded actions: Encourage users to complete an action for the first time by offering them some kind of reward.

PUSH NOTIFICATIONS STRATEGY

Push notifications are integral to every app developers’ retention strategy. They are the most effective vessel for delivering timely reminders and relevant notifications about new features on applications. Users can disallow push notifications at any time, so developers need to pick their spots or risk losing one of their most prized tools.

When developing your push notification strategy, consider the following:

  • Timing: Rather than sending push notifications all at once, target users based on their time zone. Make sure the timing of your notifications makes sense based on the message.
  • Personalization: Optimize UI by tracking app usage data and leveraging it for personalized push notifications. Personalize push notifications based on a user’s behavior such as their purchase history to help build app loyalty and keep notifications relevant.
  • Prudence: If you bombard users with irrelevant notifications, the decision to unsubscribe to push notifications becomes easy. Exercise restraint when sending push notifications and only send valuable information and reminders.

Users are always looking for value and discount—which is why delivery and transportation applications often use push notifications to send discount codes. Shopping apps can also send push notifications which notify users when they have items left in their cart—a timely prompt to finish the purchase can directly lead to revenue.

KEEP INNOVATING

The app development process does not have to end with an apps initial release into app stores. Rolling out new features to maintain engagement with your audience and bolster your application will result in improved retention.

Part 2: Optimize Onboarding with Gamification

How Gamification Can Boost Retention on Any App Part 2: Optimize Onboarding with Gamification

The Mystic Media Blog is currently endeavoring on a 3 part series on how gamification mechanics can boost retention on any app—not just gaming apps but utility apps, business apps and more. In this second entry, we explore how to refine and gamify your onboarding process to keep customers coming back.

ONBOARDING

Your app has been downloaded—a hard-fought battle in and of itself—but the war isn’t over; the onboarding process has just begun.

App onboarding is the first point of contact a user has within an application. It’s one of the most crucial parts of the user experience. Situating users in your application is the first step to ensuring they come back. Twenty-five percent of apps are only opened once after being downloaded. Many apps simply do not make it simple enough for users to understand the value and get the hang of the application—step one in your retention process.

Here are the top tips for smooth onboarding:

MINIMIZE REGISTRATION

A prolonged registration process can turn off new users. Users do not always have time to fill out extensive forms and can quickly become resentful of the pacing of your app. Keep registration to a minimum, minimize required fields, and get users going faster.

We recommend enabling user registration altogether with “Continue as Guest” functionality. Games typically employ this and it enables users to get hands on with the application before they undergo the tenuous account creation process. Hook them with your app, then let them handle the administrative aspects later. Account creation with Google, Facebook, or Twitter can also save quite a bit of time.

Gamification is all about rewarding the user. Offer users an incentive to create their account to positively reinforce the process and you will see more accounts created. If they haven’t created an account, make sure to send prompts to remind them of what the reward they are missing out on. As we detailed in our last entry, FOMO is a powerful force in gamification.

TUTORIAL BEST PRACTICES

When a user enters your application for the first time, they generally need a helping hand to understand how to use it. Many games incorporate interactive tutorials to guide the user through functionality—and business apps are wise to use it as well. However, an ineffective tutorial will only be a detriment to your application.

Pacing is key. A long tutorial will not only bog the onboarding process down, too much information will likely go in and out of the user’s brain. Space your tutorial out and break it into different sections introducing key mechanics as they become relevant. On-the-go tutorials like the four-screen carousel below by Wavely help acclimate users quickly and easily.

And don’t forget to offer a reward! Offer users some kind of reward or positive reinforcement upon completing tutorials to encourage them to continue using the application.

AVOID DEAD ENDS AND EMPTY STATES

An empty state is a place in an application that isn’t populated with any information. For example, favorites, order history, accomplishments, etc.—these pages require usage in order to be populated for information. New users will see these pages and become confused or discouraged. Many applications will offer self-evident statement such as “No Favorites Selected”. Or, in the case of UberEats below, no message is displayed.

It’s confusing and discouraging for users to see these statements. Avoid discouraging your users by offering more information, for example: “Save your favorite restaurants and find them here.” Check out Twitter’s exemplary message for users who’ve yet to favorite a tweet below.

CONCLUSION

Onboarding is the first and most crucial step to building a relationship with your userbase. One of the major things business apps can learn from gaming apps is that time is of the essence when it comes to capturing a user’s attention. Keep it short, punchy, and to the point.

Cloud-Powered Microdroid Expands Possibilities for Android App Developers

Android developers have a lot to look forward to in 2021, 2022, and beyond. Blockchain may decentralize how Android apps are developed, Flutter will see increased adoption for cross-platform development, and we expect big strides in AR and VR for the platform. Among the top trends in Android development, one potential innovation has caught the attention of savvy app developers: Microdroid.

Android developers and blogs were astir earlier this year when Google engineer Jiyong Park announced via the Android Open Source Project that they are working on a new, minimal Android-based Linux image called Microdroid.

Details about the project are scant, but it’s widely believed that Microdroid will essentially be a lighter version of the Android system image designed to function on virtual machines. Google is preparing for a world in which even smartphone OS’s require a stripped-down version that can be run through the cloud.

Working from a truncated Linux, Microdroid will pull the system image from the device (tablet or phone), creating a simulated environment accessible from any remote device. It has the ability to enable a world in which users can access Google Play and any Android app using any device.

What does this mean for developers?

Microdroid will open up new possibilities for Android apps in embedded and IoT spaces which require potentially automated management and a contained virtual machine which can mitigate security risks. Cloud gaming, cloud computing—even smartphones with all features stored in the cloudare possible. Although we will have to wait and see what big plans Google has for Microdroid and how Android developers capitalize on it, at this juncture, it’s looking like the shift to the cloud may entail major changes in how we interact with our devices. App developers are keen to keep their eyes and heads in the cloud.

Although no timeline for release has been revealed yet, we expect more on Microdroid with the announcement of Android 12.

Learn How Google Bests ARKit with Android’s ARCore

Previously, we covered the strengths of ARKit 4 in our blog Learn How Apple Tightened Their Grip on the AR Market with the Release of ARKit 4. This week, we will explore all that Android’s ARCore has to offer.

All signs point toward continued growth in the Augmented Reality space. As the latest generations of devices are equipped with enhanced hardware and camera features, applications employing AR have seen increasing adoption. While ARCore represents a breakthrough for the Android platform, it is not Google’s first endeavor into building an AR platform.

HISTORY OF GOOGLE AR

In summer 2014, Google launched their first AR platform Project Tango.

Project Tango received consistent updates, but never achieved mass adoption. Tango’s functionality was limited to three devices which could run it, including the Lenovo Phab 2 Pro which ultimately suffered from numerous issues. While it was ahead of its time, it didn’t receive the level of hype ARKit did. In March 2018, Google announced that it will no longer support Project Tango and that the tech titan will be continuing AR Development with ARCore.

ARCORE

ARCore uses three main technologies to integrate virtual content with the world through the camera:

  • Motion tracking
  • Environmental understanding
  • Light estimation

It tracks the position of the device as it moves and gradually builds its own understanding of the real world. As of now, ARCore is available for development on the following devices:

ARCORE VS. ARKIT

ARCore and ARKit have quite a bit in common. They are both compatible with Unity. They both feature a similar level of capability for sensing changes in lighting and accessing motion sensors. When it comes to mapping, ARCore is ahead of ARKit. ARCore has access to a larger dataset which boosts both the speed and quality of mapping achieved through the collection of 3D environmental information. ARKit cannot store as much local condition data and information. ARCore can also support cross-platform development—meaning you can build ARCore applications for iOS devices, while ARKit is exclusively compatible with iOS devices.

The main cons of ARCore in relation to ARKit mainly have to do with their adoption. In 2019, ARKit was on 650 million devices while there were only 400 million ARCore-enabled devices. ARKit yields 4,000+ results on GitHub while ARCore only contains 1,400+. Ultimately, iOS devices are superior to software-driven Android devices—particularly given the TrueDepth Camera—meaning that AR applications will run better on iOS devices regardless of what platform they are on.

OVERALL

It is safe to say that ARCore is the more robust platform for AR development; however, ARKit is the most popular and most widely usable AR platform. We recommend spending time determining the exact level of usability you need, as well as the demographics of your target audience.

For supplementary reading, check out this great rundown of the best ARCore apps of 2021 from Tom’s Guide.

LiDAR: The Next Revolutionary Technology and What You Need to Know

In an era of rapid technological growth, certain technologies, such as artificial intelligence and the internet of things, have received mass adoption and become household names. One up-and-coming technology that has the potential to reach that level of adoption is LiDAR.

WHAT IS LIDAR?

LiDAR, or light detection and ranging, is a popular remote sensing method for measuring the exact distance of an object on the earth’s surface. Initially used in the 1960s, LiDAR has gradually received increasing adoption, particularly after the creation of GPS in the 1980s. It became a common technology for deriving precise geospatial measurements.

LiDAR requires three components: the scanner, laser, and GPS receiver. The scanner sends a pulsed laser to the GPS receiver to calculate an object’s variable distances from the earth surface. The laser emits light which travels to the ground and reflects off things like buildings, tree branches and more. The reflected light energy then returns to the LiDAR sensor where the associated information is recorded. In combination with photodetector and optics, it allows for an ultra-precise distance detection and topographical data.

WHY IS LIDAR IMPORTANT?

As we covered in our rundown of the iPhone 12, new iOS devices come equipped with a brand new LiDAR scanner. LiDAR now enters the hands of consumers who have Apple’s new generation of devices, enabling enhanced functionality and major opportunities for app developers. The proliferation of LiDAR signals toward the technology finding mass adoption and household name status.

There are two different types of LiDAR systems: Terrestrial and Airborne. Airborne LiDAR are installed on drones or helicopters for deriving an exact measurement of distance, while Terrestrial LiDAR systems are installed on moving vehicles to collect pinpoints. Terrestrial LiDAR systems are often used to monitor highways and have been employed by autonomous cars for years, while airborne LiDAR are commonly used in environmental applications and gathering topographical data.

With the future in mind, here are the top LiDAR trends to look out for moving forward:

SUPERCHARGING APPLE DEVICES

LiDAR enhances the camera on Apple devices significantly. Auto-focus is quicker and more effective on those devices. Moreover, it supercharges AR applications by greatly enhancing the speed and quality of a camera’s ability to track the location of people as well as place objects.

One of the major apps that received a functionality boost from LiDAR is Apple’s free Measure app, which can measure distance, dimensions, and even whether an object is level. The measurements determined by the app are significantly more accurate with the new LiDAR scanner, capable of replacing physical rulers, tape measures, and spirit levels.

Microsoft’s Seeing AI application is designed for the visually impaired to navigate their environment, however, LiDAR takes it to the next level. In conjunction with artificial intelligence, LiDAR enables the application to read text, identify products and colors, and describe people, scenes, and objects that appear in the viewfinder.

BIG INVESTMENTS BY AUTOMOTIVE COMPANIES

LiDAR plays a major role in autonomous vehicles, relying on a terrestrial LiDAR system to help them self-navigate. In 2018, reports suggest that the automotive segment acquired a business share of 90 percent. With self-driving cars inching toward mass adoption, expect to see major investments in LiDAR by automotive companies in 2021 and beyond.

As automotive companies look to make major investments in LiDAR, including Volkswagen’s recent investment in Aeva, many LiDAR companies are competing to create the go-to LiDAR system for automotive companies. Check out this great article by Wired detailing the potential for this bubble to burst.

LIDAR DRIVING ENVIRONMENTAL APPLICATIONS

Beyond commercial applications and the automotive industry, LiDAR is gradually seeing increased adoption for geoscience applications. The environmental segment of the LiDAR market is anticipated to grow at a CAGR of 32% through 2025. LiDAR is vital to geoscience applications for creating accurate and high-quality 3D data to study ecosystems of various wildlife species.

One of the main environmental uses of LiDAR is for soliciting topographic information on landscapes. Topographic LiDAR is expected to see a growth rate of over 25% over the coming years. These systems can see through forest canopy to produce accurate 3D models of landscapes necessary to create contours, digital terrain models, digital surface models and more.

CONCLUSION

In March 2020, after the first LiDAR scanner became available in the iPad Pro, The Verge put it perfectly when they said that the new LiDAR sensor is an AR hardware solution in search of software. While LiDAR has gradually found increasing usage, it is still a powerful new technology with burgeoning commercial usage. Enterprising app developers are looking for new ways to use it to empower consumers and businesses alike.

For supplementary viewing on the inner workings of the technology, check out this great introduction below, courtesy of Neon Science.

AIoT: How the Intersection of AI and IoT Will Drive Innovation for Decades to Come

We have covered the evolution of the Internet of Things (IoT) and Artificial Intelligence (AI) over the years as they have gained prominence. IoT devices collect a massive amount of data. Cisco projects by the end of 2021, IoT devices will collect over 800 zettabytes of data per year. Meanwhile, AI algorithms can parse through big data and teach themselves to analyze and identify patterns to make predictions. Both technologies enable a seemingly endless amount of applications retained a massive impact on many industry verticals.

What happens when you merge them? The result is aptly named the AIoT (Artificial Intelligence of Things) and it will take IoT devices to the next level.

WHAT IS AIOT?

AIoT is any system that integrates AI technologies with IoT infrastructure, enhancing efficiency, human-machine interactions, data management and analytics.

IoT enables devices to collect, store, and analyze big data. Device operators and field engineers typically control devices. AI enhances IoT’s existing systems, enabling them to take the next step to determine and take the appropriate action based on the analysis of the data.

By embedding AI into infrastructure components, including programs, chipsets, and edge computing, AIoT enables intelligent, connected systems to learn, self-correct and self-diagnose potential issues.

960x0

One common example comes in the surveillance field. Surveillance camera can be used as an image sensor, sending every frame to an IoT system which analyzes the feed for certain objects. AI can analyze the frame and only send frames when it detects a specific object—significantly speeding up the process while reducing the amount of data generated since irrelevant frames are excluded.

CCTV-Traffic-Monitoring-1024x683

While AIoT will no doubt find a variety of applications across industries, the three segments we expect to see the most impact on are wearables, smart cities, and retail.

WEARABLES

Wearable-IoT-Devices

The global wearable device market is estimated to hit more than $87 billion by 2022. AI applications on wearable devices such as smartwatches pose a number of potential applications, particularly in the healthtech sector.

Researchers in Taiwan have been studying the potential for an AIoT wearable system for electrocardiogram (ECG) analysis and cardiac disease detection. The system would integrate a wearable IoT-based system with an AI platform for cardiac disease detection. The wearable collects real-time health data and stores it in a cloud where an AI algorithm detects disease with an average of 94% accuracy. Currently, Apple Watch Series 4 or later includes an ECG app which captures symptoms of irregular, rapid or skipped heartbeats.

Although this device is still in development, we expect to see more coming out of the wearables segment as 5G enables more robust cloud-based processing power, taking the pressure off the devices themselves.

SMART CITIES

We’ve previously explored the future of smart cities in our blog series A Smarter World. With cities eager to invest in improving public safety, transport, and energy efficiency, AIoT will drive innovation in the smart city space.

There are a number of potential applications for AIoT in smart cities. AIoT’s ability to analyze data and act opens up a number of possibilities for optimizing energy consumption for IoT systems. Smart streetlights and energy grids can analyze data to reduce wasted energy without inconveniencing citizens.

Some smart cities have already adopted AIoT applications in the transportation space. New Delhi, which boasts some of the worst traffic in the world, features an Intelligent Transport Management System (ITMS) which makes real-time dynamic decisions on traffic flows to accelerate traffic.

RETAIL

AIoT has the potential to enhance the retail shopping experience with digital augmentation. The same smart cameras we referenced earlier are being used to detect shoplifters. Walmart recently confirmed it has installed smart security cameras in over 1,000 stores.

smart-shopping-cart

One of the big innovations for AIoT involves smart shopping carts. Grocery stores in both Canada and the United States are experimenting with high-tech shopping carts, including one from Caper which uses image recognition and built-in sensors to determine what a person puts into the shopping cart.

The potential for smart shopping carts is vast—these carts will be able to inform customers of deals and promotion, recommend products based on their buying decisions, enable them to view an itemized list of their current purchases, and incorporate indoor navigation to lead them to their desired items.

A smart shopping cart company called IMAGR recently raised $14 million in a pre-Series A funding round, pointing toward a bright future for smart shopping carts.

CONCLUSION

AIoT represents the intersection of AI, IoT, 5G, and big data. 5G enables the cloud processing power for IoT devices to employ AI algorithms to analyze big data to determine and enact action items. These technologies are all relatively young, and as they continue to grow, they will empower innovators to build a smarter future for our world.

How to Leverage AR to Boost Sales and Enhance the Retail Experience

The global market for VR and AR in retail will reach $1.6 billion by 2025 according to research conducted by Goldman Sachs. Even after years of growing popularity, effectively employed Augmented Reality experiences feel to the end-user about as explicitly futuristic as any experience created by popular technology.

We have covered the many applications for AR as an indoor positioning mechanism on the Mystic MediaTM blog, but when it comes to retail, applications for AR are providing real revenue boosts and increased conversion rates.

Augmented Reality (AR) History

Ivan Sutherland 1

While working as an associate professor at Harvard University, computer scientist Ivan Sutherland, aka the “Father of Computer Graphics”, created an AR head-mounted display system which constituted the first AR technology in 1968. In the proceeding decades, AR visual displays gained traction in universities, companies, and national agencies as a way to superimpose vital information on physical environments, showing great promise for applications for aviation, military, and industrial purposes.

Fast forward to 2016, the sensational launch of Pokemon GO changed the game for AR. Within one month, Pokemon GO reached 45 million users, showing there is mainstream demand for original and compelling AR experiences.

Cross-Promotions

Several big brands took advantage of Pokemon GO’s success through cross-promotions. McDonald’s paid for Niantic to turn 3,000 Japan locations into gyms and PokeStops, a partnership that has recently ended. Starbucks took advantage of Pokemon GO’s success as well by enabling certain locations to function as PokeStops and gyms, and offering a special Pokemon GO Frappucino.

One of the ways retailers can enter into the AR game without investing heavily in technology is to cross-promote with an existing application.

In 2018, Walmart launched a partnership with Jurassic World’s AR game: Jurassic World Alive. The game is similar to Pokemon GO, using a newly accessible Google Maps API to let players search for virtual dinosaurs and items on a map, as well as battle other players. Players can enter select Walmart locations to access exclusive items.

Digital-Physical Hybrid Experiences

The visual augmentation produced by AR transforms physical spaces by leveraging the power of computer-generated graphics, an aesthetic punch-up proven to increase foot traffic. While some retailers are capitalizing on these hybrid experiences through cross-promotions, others are creating their own hybrid experiential marketing events.

Foot Locker developed an AR app that used geolocation to create a scavenger hunt in Los Angeles, leading customers to the location where they could purchase a pair of LeBron 16 King Court Purple shoes. Within two hours of launching the app, the shoes sold out.

AR also has proven potential to help stores create hybrid experiences through indoor navigation. Users can access an augmented view of the store through their phones, which makes in-store navigation easy. Users scan visual markers, recognized by Apple’s ARKitGoogle’s ARCore, and other AR SDKs, to establish their position, and AR indoor navigation applications can offer specific directions to their desired product.

Help Consumers Make Informed Choices

Ikea Place Screenshots

AR is commonly employed to enrich consumers’ understanding of potential purchases and prompt them to buy. For example, the “IKEA Place” app allows shoppers to see IKEA products in a superimposed graphics environment. IKEA boasts the app gives shoppers 98% accuracy in buying decisions.

Converse employs a similar application, the “Converse Sampler App”, which enables users to view what a shoe will look like on their feet through their device’s camera. The application increases customer confidence, helping them make the decision to purchase.

Treasury Wines Estates enhances the consumer experience with “Living Wine Labels”: AR labels that bring the history of the vineyard to life and provide users with supplementary information, including the history of the vineyard the wine came from and tasting notes.

Conclusion

AR enables striking visuals that captivate customers. As a burgeoning tool, AR enables companies to get creative and build innovative experiences that capture their customers’ imagination. Retailers who leverage AR will seize an advantage both in the short term and in the long term as the technology continues to grow and evolve.

iOS 14 Revamps the OS While Android 11 Offers Minor Improvements

Every time Apple announces a new device or OS, it is a cultural event for both consumers and app developers. When Apple announced iOS 14 in June 2020 during the WWDC 2020 keynote, few anticipated it would be one of the biggest iOS updates to date. With a host of new features and UI enhancements, the release of iOS 14  has become one of the most hotly anticipated moments of this year in technology.

On the other side of the OS war, Android has released four developer previews in 2020 of their latest OS offering: Android 11. Currently, Android 11 is currently available in a beta release ahead of its target launch in August/September.

The two biggest OS titans have effectively upped the ante on their rivalry. Here is a summary everything you need to know on how they stack up against one another:

iOS 14

iOS 14 is a larger step forward for iOS than Android 11 is for Android. In relation to iOS 13, it revamps the iOS to become smarter and more user-friendly while streamlining group conversations.

While iMessage remains the most popular messaging platform on the market, competitors like WhatsApp, Discord and Signal include a variety of features previously unavailable on iOS devices. iOS 14 closes the gap with its competitors, offering a host of UI enhancements specifically targeting group conversations—one of the most popular features on iMessage:

imessage-ios14

  • Pinned Conversations: Pin the most important conversations to the top of your profile to make them easier to access.
  • Group Photos: iOS 14 enhances group conversations by allowing users to give group conversations a visual identity using a photo, Memoji, or emoji.
  • Mentions: Users can now directly tag users in their messages within group conversations. When a user is mentioned, their name will be highlighted in the text and users can customize notifications so that they only receive notifications when they are mentioned.
  • Inline Replies: Within group conversations, users can select a specific message and reply directly to it.

One of the major upgrades in iOS 14 is the inclusion of Widgets on the home screen. Widgets on the home screen have been redesigned to offer more information at a glance. They are also customizable to give the user more flexibility in how they arrange their home screen.

applibrary-1280x720

iOS 14 introduces the App Library, a program which automatically organizes applications into categories offering a simple, easy-to-navigate view. App Library helps make all of a user’s applications visible at once and allow users to customize how they’d like their applications to be categorized.

In addition to incorporating a variety of UI enhancements, iOS 14 is significantly smarter. Siri is equipped with 20x more facts than it had three years ago. iOS 14 improves language translation, offering 11 different languages. Users can download the languages based on what they will need to keep translations private without requiring an internet connection.

Apple has also introduced a number of UI enhancements to help make the most of screen real estate:

Apple_ios14-incoming-call-screen_06222020_inline.jpg.large

Compact Calls condense the amount of screen real estate occupied by phone calls from iPhone, FaceTime, and third-party apps, allowing users to continue viewing information on their screen both when a call comes in and when they are on a call.

picture in picture

Picture in Picture mode similarly allows users to condense their video display so that it doesn’t take up their entire screen, allowing the user to navigate their device without pausing their video call or missing part of a video that they are watching.

ANDROID 11

In comparison to iOS 14, Android 11 is not a major visual overhaul of the platform. However, it does offer an array of new features which enhance UI.

  • Android 11 introduces native screen recording, allowing users to record their screen. It is a useful feature already included in iOS, particularly helpful when demonstrating how applications work.
  • While recording videos, Android allows users to mute notifications which would otherwise cause the recording to stop.
  • Users can now modify the touch sensitivity of their screen, increasing or decreasing sensitivity to their liking.
  • Android 11 makes viewing a history of past notifications as easy as it has ever been using the Notification History button.
  • When users grant an Android app access to a permission, in the current OS, the decision is written in stone for all future usage. Based on this decision, the application will have permanent access, access during usage, or will be blocked. Android 11 introduces one-time permissions, allowing users to grant an application access to a permission once and requiring the question to be posed again the next time they open it.

IOS 14 VS. ANDROID 11

While Android offers a variety of small improvements, iOS 14 provides the iOS platform with a major visual overhaul. This year, it is safe to say that iOS 14 wins the battle for the superior upgrade. With both Android and iOS slated for a fall release, how users respond to the new OS’s remains to be seen.