Tag Archives: AR

Learn More About Triggering Augmented Reality Experiences with AR Markers

learns an markers-area and play it-chrome

We expect a continued increase in the utilization of AR in 2021. The iPhone 12 contains LiDAR technology, which enables the use of ARKit 4, greatly enhancing the possibilities for developers. When creating an AR application, developers must consider a variety of methods for triggering the experience and answer several questions before determining what approach will best facilitate the creation of a digital world for their users. For example, what content will be displayed? Where will this content be placed, and in what context will the user see it?

Markerless AR can best be used when the user needs to control the placement of the AR object. For example, the IKEA Place app allows the user to place furniture in their home to see how it fits.

1_0RtFp6lxeJWxcg5EE_wYCg

Location-based AR roots an AR experience to a physical space in the world, as we explored previously in our blog Learn How Apple Tightened Their Hold on the AR Market with the Release of ARKit 4. ARKit 4 introduces Location Anchors, which enable developers to set virtual content in specific geographic coordinates (latitude, longitude, and altitude). To provide more accuracy than location alone, location anchors also use the device’s camera to capture landmarks and match them with a localization map downloaded from Apple Maps. Location anchors greatly enhance the potential for location-based AR; however, the possibilities are limited within the 50 cities which Apple has enabled them.

Marker-based AR remains the most popular method among app developers. When an application needs to know precisely what the user is looking at, accept no substitute. In marker-based AR, 3D AR models are generated using a specific marker, which triggers the display of virtual information. There are a variety of AR markers that can trigger this information, each with its own pros and cons. Below, please find our rundown of the most popular types of AR markers.

FRAMEMARKERS

5fc9da7d2761437fecd89875_1_gXPr_vwBWmgTN5Ial7Uwhg

The most popular AR marker is a framemarker, or border marker. It’s usually a 2D image printed on a piece of paper with a prominent border. During the tracking phase, the device will search for the exterior border in order to determine the real marker within.

Framemarkers are similar to QR Codes in that they are codes printed on images that require handheld devices to scan, however, they trigger AR experiences, whereas QR codes redirect the user to a web page. Framemarkers are a straightforward and effective solution.

absolut-truths

Framemarkers are particularly popular in advertising applications. Absolut Vodka’s Absolute Truth application enabled users to scan a framemarker on a label of their bottle to generate a slew of more information, including recipes and ads.

GameDevDad on Youtube offers a full tutorial of how to create framemarkers from scratch using Vuforia Augmented Reality SDK below.

 

NFT MARKERS

?????????

NFT, or Natural Feature Tracking, enable camera’s to trigger an AR experience without borders. The camera will take an image, such as the one above, and distill down it’s visual properties as below.

AugementedRealityMarkerAnymotionFeatures

The result of processing the features can generate AR, as below.

ImEinsatz

The quality and stability of these can oscillate based on the framework employed. For this reason, they are less frequently used than border markers, but function as a more visually subtle alternative. A scavenger hunt or a game employing AR might hide key information in NFT markers.

Treasury Wine Estates Living Wine Labels app, displayed above, tracks the natural features of the labels of wine bottles to create an AR experience which tells the story of their products.

OBJECT MARKERS

image1-7

The  toy car above has been converted into an object data field using Vuforia Object Scanner.

image4-1

Advancements in technology have enabled mobile devices to solve the issue of SLAM (simultaneous localization and mapping). The device camera can extract information in-real time, and use it to place a virtual object in it. In some frameworks, objects can become 3D-markers. Vuforia Object Scanner is one such framework, creating object data files that can be used in applications for targets. Virtual Reality Pop offers a great rundown on the best object recognition frameworks for AR.

RFID TAGS

Although RFID Tags are primarily used for short distance wireless communication and contact free payment, they can be used to trigger local-based virtual information.

While RFID Tags are not  widely employed, several researchers have written articles about the potential usages for RFID and AR. Researchers at the ARATLab at the National University of Singapore have combined augmented reality and RFID for the assembly of objects with embedded RFID tags, showing people how to properly assemble the parts, as demonstrated in the video below.

SPEECH MARKERS

Speech can also be used as a non-visual AR marker. The most common application for this would be for AR glasses or a smart windshield that displays information through the screen requested by the user via vocal commands.

CONCLUSION

Think like a user—it’s a staple coda for app developers and no less relevant in crafting AR experiences. Each AR trigger offers unique pros and cons. We hope this has helped you decide what is best equipped for your application.

In our next article, we will explore the innovation at the heart of AIoT, the intersection of AI and the Internet of Things.

Learn How Apple Tightened Their Hold on the AR Market with the Release of ARKit 4

arkit-og

Since the explosive launch of Pokemon Go, AR technologies have vastly improved. Our review of the iPhone 12 concluded that as Apple continues to optimize its hardware, AR will become more prominent in both applications and marketing.

At the 2020 WWDC in June, Apple announced ARKit 4, their latest iteration of the famed augmented reality platform. ARKit 4 features some vast improvements that help Apple tighten their hold on the AR market.

LOCATION ANCHORS

ARKit 4 introduces location anchors, which allow developers to set virtual content in specific geographic coordinates (latitude, longitude, and altitude). When rebuilding the data backend for Apple Maps, Apple collected camera and 3D LiDAR data from city streets across the globe. ARKit downloads the virtual map surrounding your device from the cloud and matches it with the device’s feed to determine your location. The kicker is: all processing happens using machine learning within the device, so your camera feed stays put.

36431-67814-ARKit-xl

Devices with an A12 chip or later, can run Geo-tracking; however, location anchors require Apple to have mapped the area previously. As of now, they are supported in over 50 cities in the U.S. As the availability of compatible devices increases and Apple continues to expand its mapping project, location anchors will find increased usage.

DEPTH API

ARKit’s new Depth API harnesses the LiDAR scanner available on iPad Pro and iPhone 12 devices to introduce advanced scene understanding and enhanced pixel depth information in AR applications. When combined with 3D mesh data derived from Scene Geometry, which creates a 3D matrix of readings of the environment, the Depth API vastly improves virtual object occlusion features. The result is the instant placement of digital objects and seamless blending with their physical surroundings.

FACE TRACKING

1_tm5vrdVDr2DAulgPvDMRow

Face tracking has found an exceptional application in Memojis, which enables fun AR experiences for devices with a TrueDepth camera. ARKit 4 expands support to devices without a camera that has at least an A12. TrueDepth cameras can now leverage ARKit 4 to track up to three faces at once, providing many fun potential applications for Memojis.

VIDEO MATERIALS WITH REALITYKIT

b3b1c224-5db5-4e38-97de-76f90c32b53a

ARKit 4 also brings with it RealityKit, which adds support for applying video textures and materials to AR experiences. For example, developers will be able to place a virtual television on a wall, complete with realistic attributes, including light emission, texture roughness, and even audio. Consequentially, AR developers can develop even more immersive and realistic experiences for their users.

CONCLUSION

iOS and Android are competing for supremacy when it comes to AR development. While the two companies’ goals and research overlap, Apple has a major leg up on Google in its massive base of high-end devices and its ability to imbue them with the necessary structure sensors like TrueDepth and LiDAR.

ARKit has been the biggest AR development platform since it hit the market in 2017. ARKit 4 provides the technical capabilities tools for innovators and creative thinkers to build a new world of virtual integration.

How App Developers Can Leverage the iPhone 12 to Maximize Their Apps

iPhone 12

On October 23rd, four brand new iPhone 12 models were released to retailers. As the manufacturer of the most popular smartphone model in the world, whenever Apple delivers a new device its front-page news. Mobile app developers looking to capitalize on new devices must stay abreast of the latest technologies, how they empower applications, and what they signal about where the future of app development is headed.

With that in mind, here is everything app developers need to know about the latest iPhone models.

BIG DEVELOPMENTS FOR AUGMENTED REALITY

LiDAR is a method for measuring distances (ranging) by illuminating the target with laser light and measuring the reflection with a sensor

LiDAR is a method for measuring distances (ranging) by illuminating the target with laser light and measuring the reflection with a sensor

On a camera level, the iPhone 12 includes significant advancements. It is the first phone to record and edit Dolby Vision with HDR. What’s more, Apple has enhanced the iPhone’s LiDAR sensor capabilities with a third telephoto lens.

The opportunities for app developers are significant. For AR developers, this is a breakthrough—enhanced LiDAR on the iPhone 12 means a broad market will have access to enhanced depth perception, enabling smoother AR object placement. The LIDAR sensor produces a 6x increase in autofocus speed in low light settings.

The potential use cases are vast. An enterprise-level application could leverage the enhanced camera to show the inner workings of a complex machine and provide solutions. Dimly lit rooms can now house AR objects, such as Christmas decorations. The iPhone 12 provides a platform for AR developers to count on a growing market of app users to do much more with less light, and scan rooms with more detail.

The iPhone 12’s enhanced LiDAR Scanner will enable iOS app developers to employ Apple’s ARKit 4 to attain enhanced depth information through a brand-new Depth API. ARKit 4 also introduces location anchors, which enable developers to place AR experiences at a specific point in the world in their iPhone and iPad apps.

With iPhone 12, Apple sends a clear message to app developers: AR is on the rise.

ALL IPHONE 12 MODELS SUPPORT 5G

5G 2

The entire iPhone 12 family of devices supports 5G with both sub-6GHz and mmWave networks. When iPhone 12 devices leverage 5G with the Apple A14 bionic chip, it enables them to integrate with IoT devices, and perform on ML algorithms at a much higher level.

5G poses an endless array of possibilities for app developers—from enhanced UX, more accurate GPS, improved video apps, and more. 5G will reduce dependency on hardware as app data is stored in the cloud with faster transfer speeds. In addition, it will enable even more potential innovation for AR applications.

5G represents a new frontier for app developers, IoT, and much more. Major carriers have been rolling out 5G networks over the past few years, but access points remain primarily in major cities. Regardless, 5G will gradually become the norm over the course of the next few years and this will expand the playing field for app developers.

WHAT DOES IT MEAN?

Beyond the bells and whistles, the iPhone 12 sends a very clear message about what app developers can anticipate will have the biggest impact on the future of app development: AR and 5G. Applications employing these technologies will have massive potential to evolve as the iPhone 12 and its successors become the norm and older devices are phased out.

How to Leverage AR to Boost Sales and Enhance the Retail Experience

AR REtail Cover Image

The global market for VR and AR in retail will reach $1.6 billion by 2025 according to research conducted by Goldman Sachs. Even after years of growing popularity, effectively employed Augmented Reality experiences feel to the end-user about as explicitly futuristic as any experience created by popular technology.

We have covered the many applications for AR as an indoor positioning mechanism on the Mystic MediaTM blog, but when it comes to retail, applications for AR are providing real revenue boosts and increased conversion rates.

Augmented Reality (AR) History

Ivan Sutherland 1

While working as an associate professor at Harvard University, computer scientist Ivan Sutherland, aka the “Father of Computer Graphics”, created an AR head-mounted display system which constituted the first AR technology in 1968. In the proceeding decades, AR visual displays gained traction in universities, companies, and national agencies as a way to superimpose vital information on physical environments, showing great promise for applications for aviation, military, and industrial purposes.

Fast forward to 2016, the sensational launch of Pokemon GO changed the game for AR. Within one month, Pokemon GO reached 45 million users, showing there is mainstream demand for original and compelling AR experiences.

Cross-Promotions

Several big brands took advantage of Pokemon GO’s success through cross-promotions. McDonald’s paid for Niantic to turn 3,000 Japan locations into gyms and PokeStops, a partnership that has recently endedStarbucks took advantage of Pokemon GO’s success as well by enabling certain locations to function as PokeStops and gyms, and offering a special Pokemon GO Frappucino.

One of the ways retailers can enter into the AR game without investing heavily in technology is to cross-promote with an existing application.

In 2018, Walmart launched a partnership with Jurassic World’s AR game: Jurassic World Alive. The game is similar to Pokemon GO, using a newly accessible Google Maps API to let players search for virtual dinosaurs and items on a map, as well as battle other players. Players can enter select Walmart locations to access exclusive items.

Digital-Physical Hybrid Experiences

The visual augmentation produced by AR transforms physical spaces by leveraging the power of computer-generated graphics, an aesthetic punch-up proven to increase foot traffic. While some retailers are capitalizing on these hybrid experiences through cross-promotions, others are creating their own hybrid experiential marketing events.

Foot Locker developed an AR app that used geolocation to create a scavenger hunt in Los Angeles, leading customers to the location where they could purchase a pair of LeBron 16 King Court Purple shoes. Within two hours of launching the app, the shoes sold out.

AR also has proven potential to help stores create hybrid experiences through indoor navigation. Users can access an augmented view of the store through their phones, which makes in-store navigation easy. Users scan visual markers, recognized by Apple’s ARKitGoogle’s ARCore, and other AR SDKs, to establish their position, and AR indoor navigation applications can offer specific directions to their desired product.

Help Consumers Make Informed Choices

Ikea Place Screenshots

AR is commonly employed to enrich consumers’ understanding of potential purchases and prompt them to buy. For example, the “IKEA Place” app allows shoppers to see IKEA products in a superimposed graphics environment. IKEA boasts the app gives shoppers 98% accuracy in buying decisions.

Converse employs a similar application, the “Converse Sampler App”, which enables users to view what a shoe will look like on their feet through their device’s camera. The application increases customer confidence, helping them make the decision to purchase.

Treasury Wines Estates enhances the consumer experience with “Living Wine Labels”: AR labels that bring the history of the vineyard to life and provide users with supplementary information, including the history of the vineyard the wine came from and tasting notes.

Conclusion

AR enables striking visuals that captivate customers. As a burgeoning tool, AR enables companies to get creative and build innovative experiences that capture their customers’ imagination. Retailers who leverage AR will seize an advantage both in the short term and in the long term as the technology continues to grow and evolve.

The Future of Indoor GPS Part 5: Inside AR’s Potential to Dominate the Indoor Positioning Space

augmented-reality-being-used-in-gatwicks-north-terminal

In the previous installment of our blog series on indoor positioning, we explored how RFID Tags are finding traction in the indoor positioning space. This week, we will examine the potential for AR Indoor Positioning to receive mass adoption.

When Pokemon Go accrued 550 million installs and made $470 million in revenues in 2016, AR became a household name technology. The release of ARKit and ARCore significantly enhanced the ability for mobile app developers to create popular AR apps. However, since Pokemon Go’s explosive release, no application has brought AR technology to the forefront of the public conversation.

When it comes to indoor positioning technology, AR has major growth potential. GPS is the most prevalent technology navigation space, but it cannot provide accurate positioning within buildings. GPS can be accurate in large buildings such as airports, but it fails to locate floor number and more specifics. Where GPS fails, AR-based indoor positioning systems can flourish.

HOW DOES IT WORK?

AR indoor navigation consists of three modules: Mapping, Positioning, and Rendering.

via Mobi Dev

via Mobi Dev

Mapping: creates a map of an indoor space to make a route.

Rendering: manages the design of the AR content as displayed to the user.

Positioning: is the most complex module. There’s no accurate way of using the technology available within the device to determine the precise location of users indoors, including the exact floor.

AR-based indoor positioning solves that problem by using Visual Markers, or AR Markers, to establish the users’ position. Visual markers are recognized by Apple’s ARKit, Google’s ARCore, and other AR SDKs.  When the user scans that marker, it can identify exactly where the user is and provide them with a navigation interface. The further the user is from the last visual marker, the less accurate their location information becomes. In order to maintain accuracy, developers recommend placing visual markers every 50 meters.

Whereas beacon-based indoor positioning technologies can become expensive quickly, running $10-20 per beacon with a working range of around 10-100 meters of accuracy, AR visual markers are the more precise and cost-effective solution with an accuracy threshold down to within millimeters.

Via View AR

Via View AR

CHALLENGES

Performance can decline when more markers have been into an AR-based VPS because all markers must be checked to find a match. If the application is set up for a small building where 10-20 markers are required, it is not an issue. If it’s a chain of supermarkets requiring thousands of visual markers across a city, it becomes more challenging.

Luckily, GPS can help determine the building where the user is located, limiting the number of visual markers the application will ping. Innovators in the AR-based indoor positioning space are using hybrid approaches like this to maximize precision and scale of AR positioning technologies.

CONCLUSION

AR-based indoor navigation has had few cases and requires further technical development before it can roll out on a large scale, but all technological evidence indicates that it will be one of the major indoor positioning technologies of the future.

This entry concludes our blog series on Indoor Positioning, we hope you enjoyed and learned from it! In case you missed it, check out our past entries:

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

The Future of Indoor GPS Part 2: Bluetooth 5.1′s Angle of Arrival Ups the Ante for BLE Beacons

The Future of Indoor GPS Part 3: The Broadening Appeal of Ultra Wideband

The Future of Indoor GPS Part 4: Read the Room with RFID Tags

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

background-hand-social

GPS can help you get from A to B, but what can it do to enhance your indoor retail experience?  Over the next several entries, the Mystic Media Blog will endeavor on a five-part deep dive into the top indoor location technologies and how they will help form the retail experience of the future.

GPS has become ingrained in our everyday lives. Zoomers will never know of a world without GPS, the world of Mapquest and just plain old maps.

While Google Maps, Waze, and Apple Maps can take you from your home to your favorite retailer, finding your way around large stores remains difficult. As a business owner, you want to make the act of navigating the store as easy as possible so that your customers have a positive experience finding what they want. Indoor GPS can solve that problem.

In the past five years, indoor positioning has blown up. The global market for indoor location technology is projected to hit $40.99 billion by 2022, a significant increase from $5.22 billion in 2016. That’s a compound annual growth rate of 42%. With $2.4 billion anticipated in annual spending on beacons and asset tracking by the end of 2020, IPS or Indoor Positioning Systems are here to stay.

Here are the top IPS technologies in use today:

Bluetooth-5.1-Beacon

BLE 5.1 BEACONS

Bluetooth Low Energy Beacons are tiny battery powered devices that can connect to bluetooth-enabled devices like smartphones.

When it comes to indoor positioning, the more precise the positioning, the larger the investment required to achieve it. Bluetooth Low Energy beacons have become a technology stack because they require relatively inexpensive hardware to achieve an accuracy of up to 1-3 meters. BLE 5.1 beacons have improved upon that, providing 1-10 centimeters of accuracy with minimal lag.

BLE is extremely power efficient and cost-effective, minimally draining a phone’s battery  when connected, and can be used within WiFi access points or lighting infrastructure. Since they infrequently require maintenance, they are often used in high-traffic venues.

Locatify-UWB-Ultrawideband-RTLS

ULTRA-WIDEBAND (UWB)

Ultra-wideband (UWB) is a radio technology utilizing low power consumption for a high-bandwidth connection. UWB has extremely precise locating abilities, dialing in to locate objects within one centimeter.

In September 2019, Apple announced the iPhone 11 includes a “U1” chip with UWB technology; however, UWB technology is currently not widely available. Many consider it to be the future of indoor positioning technology, but the lack of existing infrastructure will likely delay mass adoption. Regardless, for applications like warehouse tracking where ultra-precise positioning is required, UWB is an ideal solution.

RFID

RFID TAGS

RFID stands for Radio Frequency Identification. RFID is a simple technology with a tag and a reader. The reader extracts data from the tag using radio-frequency electromagnetic field and identifies the object the tag is attached to.

Although RFID is often used in combination with other technologies for more precise indoor location, the market for RFID is gradually increasing. It’s currently slated for growth in the apparel and shoes space, with great potential in other markets such as healthcare and automotive.

augmented-reality-indoor-navigation-development

AR-BASED NAVIGATION

Indoor navigation utilizing Augmented Reality technologies can do more than just help you navigate a store, it can totally revolutionize the retail experience.  AR can create virtual paths and arrows to help navigate the store. For businesses, AR can improve internal processes by making it easier for staff to navigate offices and warehouses.

This technology is enabled by placing visual markers which can be scanned by the users using their mobile device’s camera. The phone will then guide the user through the retail experience and can be customized to help them find what they need.

In May 2019, the number of AR-enabled devices around the world reached 1.05 billion. Apple and Google are actively working on improving ARKit and ARCore, their AR software development frameworks. Beyond simply helping customers and staff navigate stores, AR will pave the way for personalized shopping experiences unlike any we’ve seen before.

CONCLUSION

While BLE Beacons are currently the leader in the marketplace, many technologies are competing to pioneer the most advanced and accurate indoor location technologies. Given the countless applications, the future is looking bright for indoor location applications! Tune into our next indoor positioning blog when we take a deep dive into BLE 5.1 beacons.

How 5G Will Enable the Next Generation of Healthcare

qc_onq_5ghealthcare_websitecard_v6

In the past month, we’ve explored 5G, or fifth generation cellular technology, and how 5G will shape the future. In this piece, we’ll spotlight the many ways in which 5G will revolutionize the healthcare industry.

DATA TRANSMISSION

Many medical machines like MRIs and other imaging machines generate very large files that must then be sent to specialists for review. When operating on a network with low bandwidth, the transmission can take a long time or not send successfully. This means patients must wait even longer for treatment, inhibiting the efficiency of healthcare providers. 5G networks will vastly surpass current network speeds, enabling healthcare providers to quickly and reliably transport huge data files, allowing patients and doctors to get results fast.

EXPANDING TELEMEDICINE

why-use-telemedicine

A study by Market Research Future showed that the future of telemedicine is bright—an annual growth rate of 16.5% is expected from 2017 to 2023. 5G is among the primary reasons for that level of growth. In order to support the real-time high-quality video necessary for telemedicine to be effective, hospitals and healthcare providers will need 5G networks that can reliably provide high-speed connections. Telemedicine will result in higher quality healthcare in rural areas and increased access to specialists around the world. Additionally, 5G will enable growth in AR, adding a new dimension to the quality of telemedicine.

REMOTE MONITORING AND WEARABLES

It’s no secret that 5G will enable incredible innovation in the IoT space. One of the ways in which IoT will enable more personalized healthcare involves wearables. According to Anthem, 86% of doctors say wearables increase patient engagement with their own health and wearables are expected to reduce hospital costs by 16% in the next five years.

Wearables like Fitbit track health information that can be vital for doctors to monitor patient health and offer preventative care. While the impact may initially be negligible, as technology advances and more applications for gathering data through wearables emerge, 5G will enable the high-speed, low-latency, data-intensive transfers necessary to take health-focused wearables to the next level. Doctors with increased access to patient information and data will be able to monitor and ultimately predict potential risks to patient health and enact preventative measures to get ahead of health issues.

Companies like CommandWear are creating wearable technology that helps save lives by enabling first responders to be more efficient and more conveniently communicate with their teams.

ARTIFICIAL INTELLIGENCE

In the future, artificial intelligence will analyze data to determine potential diagnoses and help determine the best treatment for a patient. The large amounts of data needed for real-time rapid machine learning requires ultra-reliable and high-bandwidth networks—the type of networks only 5G can offer.

One potential use case for AI in healthcare will be Health Management Systems. Picture a system that combines the Internet of Things with cloud computing and big data technology to fully exploit health status change information. Through data-mining, potential diseases can be screened and alarmed in advance. Health Management Systems will gradually receive mass adoption as 5G enables the data-transmission speeds necessary for machine learning to operate in the cloud and develop algorithms to predict future outcomes.

MAJOR PLAYERS

Right now, the major players who serve to benefit from 5G are the telecom companies developing technology that will enable mass adoption. Companies like Huawei Technologies, Nokia, Ericsson, Qualcomm, Verizon, AT&T, and Cisco Systems are investing massive sums of money into research and development and patenting various technologies, some of which will no doubt become the cornerstones of the future of healthcare.

Qualcomm recently hosted a contest to create a tricoder—a real life device based on a machine in the Star Trek TV movie franchise. Tricoders are portable medical devices that would enable patients to diagnose 13 conditions and continuously monitor five vital signs.

For a full list of major players in the 5G game, check out this awesome list from GreyB.

CONCLUSION

With human lives at stake, healthcare is the sector in which 5G could have the most transformative impact on our society. As the Qualcomm Tricoder contest shows, we are gradually building toward the society previously only dreamed about in sci-fi fiction–and 5G will help pave the way.

How 5G Will Inspire a Technological Revolution

5g

In our last blog 5G: Exploring the Fifth Generation of Cellular Mobile Communications, we explored an overview of what 5G is and when it will be rolling out in your city.

Now, it is time for the fun stuff! 5G will change the way we interact with technology on a daily basis. Here’s a rundown of some of the revelatory applications enabled by 5G which will shape the future of our world:

THE INTERNET OF THINGS

Via Toxsl Technologies

Via Toxsl Technologies

In 2016, we wrote about how the Internet of Things will eventually enable smart-worlds. 5G is necessary in order to facilitate those changes. Most of the biggest innovations enabled by 5G are related to the Internet of Things. The world currently has sensors that are embedded in devices and objects and can communicate with each other, but they require a great deal of resources and quickly deplete LTE’s data capacity. 5G will give these sensors the ability to transmit data at speeds necessary to operate more efficiently. It will save lives by enabling smart bridges to communicate with cities and municipalities about when they require maintenance, among many other potential applications.

AUTONOMOUS VEHICLES

Via Seeking Alpha

Via Seeking Alpha

The world is at a cross-roads when it comes to autonomous vehicles. The demand is here, but in order to justify legislation, autonomous cars must be ostensibly fool-proof. 5G will enable the speed necessary for autonomous vehicles to communicate with other vehicles on the road, saving lives in the process. According to Joy Laskar, CTO of Maja Systems, self-driving cars of the future will generate an estimated two petabits of data—that’s two-million gigabits! When dealing with automotive vehicles, people’s lives will be dependent on the transmission of data. Put it simply, until 5G receives a mass roll-out, it’s unlikely that autonomous cars will become the primary vehicles on the road.

HEALTHCARE

Via Fortinet

Via Fortinet

Imagine remote diagnoses that enable people worldwide to have access to expert doctors. Imagine robot-assisted surgery that is more precise and cost-effective. Imagine 5G-powered Augmented Reality applications allowing physical therapists and patients to communicate remotely.

These are just a few of the innovations that 5G will enable within the healthcare space. 5G will eventually enable much more precise and efficient hospitals. It will give patients more personal care. Consulting firm IHS Markit reported that “5G-enabled” output between 2020 and 2035 will total at $12.3 trillion. Of that amount, roughly $1.1 trillion will encompass sales enablement in healthcare.

VIRTUAL REALITY AND AUGMENTED REALITY

Via Upload VR

Via Upload VR

Experts within the VR and AR industry believe 5G will unlock the full potential of VR and AR technology. 5G will enable VR devices to offload intensive computational work to the cloud, making VR devices smaller and increasing the fidelity of VR experiences. AR displays in autonomous cars will likely become the norm. 5G will enable VR live streaming of sporting events, creating a revolutionarily immersive viewing experience. As with autonomous cars, we will not see the full potential of VR until 5G receives mass adoption.

TAKEAWAYS

5G will permanently change the global economy. 5G will generate new revenue, facilitate new growth, and accelerate innovations beyond our wildest dreams. Dr. David Teece wrote that 5G will put mobile technology at the center of a global economy characterized by the Internet of Things turning into a true general-purpose technology. While each evolution of the cellular generation has brought amazing advancements to society, 5G promises to bring the most radical breakthroughs of any of previous generations. Ready or not, 5G is about to bring interconnectivity to a whole new level.

The Best New Features of iOS 11

iOS 11 Image

While we thoroughly enjoyed iOS 10’s open functionality and all it offered app developers, Apple’s premiere operating system is due for a refresh. iOS 11 has been making waves in its public beta release, here are the top upgrades coming to Apple’s landmark OS:

MAJOR UPGRADES FOR IPAD

Apple’s iOS 11 preview states right off the bat: “A giant step for iPhone. A monumental leap for iPad.” iOS 11 offers a number of improvements for iPad users.

The improved Dock now looks a lot like the macOS dock. Users can put dozens of apps in the doc and easily pull it up by swiping upward.

Need to use two apps at the same time? iOS has your back. Like Picture-In-Picture Mode for Android, which we detailed last week in our coverage of Android Oreo, iOS 11 allows you to use two apps at the same time—something that will inevitably come in handy on the large screens of the iPad.

Apple Pencil Instant Notes via Redmond Pie

APPLE PENCIL receives a major upgrade in iOS 11. Instant Markup makes it easy to mark up PDFs, screenshots and more. Instant Notes and Inline Drawing let you customize your screen. The Scan and Sign feature also makes it easy to sign important documents online and send them in the flash of an eye.

SIRI MATURES

WIRED recently detailed the path toward improving the voice of iOS: Siri. While Google and Amazon have excelled in their virtual assistant development, Siri seems to have lagged behind. iOS 11 revamps Siri’s voice to sound much more natural, while also teaching her to translate Chinese, Spanish, French, German, or Italian.

GET READY FOR AUGMENTED REALITY!

When Pokemon Go took the world by storm, “Augmented Reality” became a household name. Now, the time has come for app developers rejoice! iOS 11 features ARKit, a new development framework that makes it easy for developers to build incredible AR experiences.

ARKit allows developers to create 2D or 3D elements in the live view from iPhone and iPad camera’s in order to make them appear as if they exist in the real world. ARKit combines device motion tracking, camera scene capture, advanced scene processing, and display conveniences to make building AR experiences a breeze.

Check out some of the best AR experiences built with ARKit so far.

CAMERA TIME

Thanks to a new compression technology, iOS 11 will be able to store video using less space than ever. Additionally, the camera will allow users to loop live videos, to trim and edit live videos, to grab a still from a live photo, and to capture time and movement with long exposure photos.

Apple App Store via BGR

APP STORE REDESIGN

The rigorous standards of Apple’s App Store always lent itself to curation. With that in mind, Apple has redesigned the App Store to emphasize discovery. The new App Store will offer a completely separate tab for Games, a variety of daily stories and a tab for the best apps of the day, all curated by Apple!

FILES, PAYMENT, AND MORE

iOS 11 is a comprehensive upgrade that comes equipped with a host of other great additions, including:

- FILES: Never lose track of important documents again! The Files app makes it easy to find files stored on iOS devices, in iCloud Drive, and even across other cloud services like Box and Dropbox.

- APPLE PAY IN IMESSAGE: iOS 11 will make peer-to-peer payments easy, allowing users to send Apple Pay payments as a part of iMessage.

- CONTROL CENTER: The Control Center has received a complete redesign. The new Control Center will appear all on one page and is customizable, allowing users to personalize the design to the most helpful layout.

TAKEAWAYS

If you are an iPad user, you are truly in for a treat when iOS 11 comes out. If you only use iPhone, iOS 11 still delivers a fresh redesign with improved functionality. iOS 11 is yet another solid entry in Apple’s OS canon.