Tag Archives: BLE

How Bluetooth Became the Gold Standard of Wireless Audio Technology

Bluetooth technology has established itself over the years as the premiere wireless audio technology and a staple of every smartphone user’s daily mobile experience. From wireless headphones, to speakers, to keyboards, gaming controllers, IoT devices, and instant hotspots—Bluetooth is used for a growing variety of functions every year.

While Bluetooth is now a household name, the path to popularity was built over the course of over 20 years.

CONCEPTION

In 1994, Dr. Jaap Haartsen—an electrical engineer working for Ericsson’s Mobile Terminal Division in Lund—was tasked with creating an indoor wireless communication system for short-range radio connections. He ultimately created the Bluetooth protocol. Named after the renowned Viking king who united Denmark and Norway in 958 AD, the Bluetooth protocol was designed to replace RS-232 telecommunication cables using short range UHF radio waves between 2.4 and 2.485 GHz.

In 1998, he helped create the Bluetooth Special Interest Group, driving the standardization of the Bluetooth radio interface and obtaining worldwide regulatory approval for Bluetooth technology. To this day, Bluetooth SIG publishes and promotes the Bluetooth standard as well as revisions.

BLUETOOTH REACHES CONSUMERS

In 1999, Ericsson introduced the first major Bluetooth product for consumers in the form of a hands-free mobile headset. The headset won the “Best of Show Technology” award at COMDEX and was equipped with Bluetooth 1.0.

Each iteration of Bluetooth has three main distinguishing factors:

  • Range
  • Data speed
  • Power consumption

The strength of these factors is determined by both the modulation scheme and data packet employed. As you might imagine, Bluetooth 1.0 was far slower than the Bluetooth we’ve become accustomed to in 2021. Data speeds capped at 1Mbps with a range up to 10 meters. While we use Bluetooth to listen to audio on a regular basis today, it was hardly equipped to handle music and primarily designed for wireless voice calls.

THE BLUETOOTH EVOLUTION

The Bluetooth we currently enjoy in 2021 is version 5. Over the years, Bluetooth’s range, data speed, and power consumption have increased dramatically.

In 2004, Bluetooth 2.0 focused on enhancing the data rate, pushing from 0.7Mbps in version 1 to 1-3Mbps while increasing range from 10m to 30m. Bluetooth 3.0 increased speeds in 2009, allowing up to 24Mbps.

In 2011, Bluetooth 4.0 introduced a major innovation in BLE (Bluetooth Low Energy). BLE is an alternate Bluetooth segment designed for very low power operation. It enables major flexibility to build products that meet the unique connectivity requirements of their market. BLE is tailored toward burst-like communications, remaining in sleep mode before and after the connection initiates. The decreased power consumption takes IoT devices like industrial monitoring sensors, blood pressure monitoring, and Fitbit devices to the next level. These devices can employ BLE to run at 1Mbps at very low power consumption rates. In addition to lowering the power consumption, Bluetooth 4.0 doubles the typical maximum range from 30m in Bluetooth 3.0 to 60m.

BLUETOOTH 5

Bluetooth 5 is the latest version of the technology. Bluetooth 5 doubles the bandwidth by doubling the speed of transmission. In addition, it quadruples the typical max range, bringing it up to 240m. Bluetooth 5 also introduces Bluetooth Low Energy audio, which enables one device to share audio with multiple other devices.

CONCLUSION

Bluetooth is a game-changing technology which stands to revolutionize more than just audio. IoT devices, health tech, and more stand to improve as the Bluetooth SIG continues to upgrade the protocol. After thirty years of improvement, the possibilities remain vast for savvy developers to take advantage of the latest Bluetooth protocols to build futuristic wireless technologies.

The Future of Indoor GPS Part 2: Bluetooth 5.1’s Angle of Arrival Ups the Ante for BLE Beacons

In the last installment of our blog series on indoor positioning, we examined an overview of the top indoor positioning technologies. This week, we will examine the most precise and popular method: Bluetooth BLE Beacons and how Bluetooth 5.1 enables them to be the most popular indoor positioning tool on the market.

As the world transitions into a wireless society, Bluetooth technology has evolved and gained more and more popularity. Apple’s decision to remove 1/8th inch audio ports from their devices, while irksome to many consumers, was a definitive move in the direction of Bluetooth.

The growing market for indoor positioning has incentivized an evolution in the landscape of Bluetooth technology. The first consumer bluetooth device was launched in 1999. This year, the world is forecasted to ship more than 4.5 billion Bluetooth devices worldwide. Behind the scenes, manufacturers are using Bluetooth technology for asset tracking and warehouse management. Bluetooth 5.1 technology, in concert with Bluetooth BLE Beacons, is the most popular indoor positioning method.

Nordic nRF52840-Dongle
Nordic nRF52840-Dongle

BLUETOOTH 5.1

Announced in January 2019 by the Bluetooth Special Interest Group (SIG), Bluetooth 5.1 is the latest and most powerful iteration of Bluetooth technology yet.

Bluetooth 5.1 can connect with other devices at a distance of 985 feet, quadruple Bluetooth 4.0. Bluetooth 5.1 improves upon Bluetooth 4.0’s indoor positioning capabilities with Angle of Arrival (AoA) and Angle of Departure (AoD) features. When used for indoor location, Bluetooth 5.1 can provide up to 1-10 centimeters of accuracy with very little lag. At 48MBps, Bluetooth 5.1 is twice as fast as Bluetooth 4.0.

In addition to being faster and more powerful, Bluetooth 5.1 is the continuation of Low Energy LE, consuming less power than previous iterations of Bluetooth.

INDOOR POSITIONING

Bluetooth BLE Beacons are attached to objects, vehicles, devices, etc. and used to track their location. Bluetooth BLE beacons enable Bluetooth devices to communicate with IoT products and other devices. The top suppliers in the  beacon space include Kontakt, Blukii, Minew, Gimbal, Estimote, and EM Microelectronic.

AoA and AoD features are at the core of what enhances positioning technologies in Bluetooth 5.1.

Angle of Arrival diagram via ScienceDirect.com
Angle of Arrival diagram via ScienceDirect.com

In AoA, the  device or tag transmits a specific direction-finding packet using one antenna. The receiving device receives the incoming signal with multiple antennas, each antenna receiving the signal at slightly different times relative to each other. An algorithm factors in the shifts in signal and yields precise coordinate information.

AoD flips the scenario. The device sending the signal has an array of antennas and transmits a packet via the antenna ray. The receiving device then makes an IQ sampling of its antenna to determine the coordinate calculation.

USE CASES

Enhanced indoor positioning enables a number of use cases. In sports stadiums and music venues,  a locating hub near the center of the arena can receive signals from devices using AoA technology and determine location coordinates. Keys, perhaps the most commonly lost object, can be embedded with a sensor and located using a locator hub equipped by a smart home.

Bluetooth BLE Beacons, harnessing Bluetooth 5.1, remain the most cost and energy-efficient method of attaining precise indoor positioning locations.

Stay tuned for the next entry in our Indoor Positioning blog series which will explore the wonders of Ultra-Wideband (UWB) technology!

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

GPS can help you get from A to B, but what can it do to enhance your indoor retail experience?  Over the next several entries, the Mystic Media Blog will endeavor on a five-part deep dive into the top indoor location technologies and how they will help form the retail experience of the future.

GPS has become ingrained in our everyday lives. Zoomers will never know of a world without GPS, the world of Mapquest and just plain old maps.

While Google Maps, Waze, and Apple Maps can take you from your home to your favorite retailer, finding your way around large stores remains difficult. As a business owner, you want to make the act of navigating the store as easy as possible so that your customers have a positive experience finding what they want. Indoor GPS can solve that problem.

In the past five years, indoor positioning has blown up. The global market for indoor location technology is projected to hit $40.99 billion by 2022, a significant increase from $5.22 billion in 2016. That’s a compound annual growth rate of 42%. With $2.4 billion anticipated in annual spending on beacons and asset tracking by the end of 2020, IPS or Indoor Positioning Systems are here to stay.

Here are the top IPS technologies in use today:

Bluetooth-5.1-Beacon

BLE 5.1 BEACONS

Bluetooth Low Energy Beacons are tiny battery powered devices that can connect to bluetooth-enabled devices like smartphones.

When it comes to indoor positioning, the more precise the positioning, the larger the investment required to achieve it. Bluetooth Low Energy beacons have become a technology stack because they require relatively inexpensive hardware to achieve an accuracy of up to 1-3 meters. BLE 5.1 beacons have improved upon that, providing 1-10 centimeters of accuracy with minimal lag.

BLE is extremely power efficient and cost-effective, minimally draining a phone’s battery  when connected, and can be used within WiFi access points or lighting infrastructure. Since they infrequently require maintenance, they are often used in high-traffic venues.

Locatify-UWB-Ultrawideband-RTLS

ULTRA-WIDEBAND (UWB)

Ultra-wideband (UWB) is a radio technology utilizing low power consumption for a high-bandwidth connection. UWB has extremely precise locating abilities, dialing in to locate objects within one centimeter.

In September 2019, Apple announced the iPhone 11 includes a “U1” chip with UWB technology; however, UWB technology is currently not widely available. Many consider it to be the future of indoor positioning technology, but the lack of existing infrastructure will likely delay mass adoption. Regardless, for applications like warehouse tracking where ultra-precise positioning is required, UWB is an ideal solution.

RFID

RFID TAGS

RFID stands for Radio Frequency Identification. RFID is a simple technology with a tag and a reader. The reader extracts data from the tag using radio-frequency electromagnetic field and identifies the object the tag is attached to.

Although RFID is often used in combination with other technologies for more precise indoor location, the market for RFID is gradually increasing. It’s currently slated for growth in the apparel and shoes space, with great potential in other markets such as healthcare and automotive.

augmented-reality-indoor-navigation-development

AR-BASED NAVIGATION

Indoor navigation utilizing Augmented Reality technologies can do more than just help you navigate a store, it can totally revolutionize the retail experience.  AR can create virtual paths and arrows to help navigate the store. For businesses, AR can improve internal processes by making it easier for staff to navigate offices and warehouses.

This technology is enabled by placing visual markers which can be scanned by the users using their mobile device’s camera. The phone will then guide the user through the retail experience and can be customized to help them find what they need.

In May 2019, the number of AR-enabled devices around the world reached 1.05 billion. Apple and Google are actively working on improving ARKit and ARCore, their AR software development frameworks. Beyond simply helping customers and staff navigate stores, AR will pave the way for personalized shopping experiences unlike any we’ve seen before.

CONCLUSION

While BLE Beacons are currently the leader in the marketplace, many technologies are competing to pioneer the most advanced and accurate indoor location technologies. Given the countless applications, the future is looking bright for indoor location applications! Tune into our next indoor positioning blog when we take a deep dive into BLE 5.1 beacons.