Tag Archives: Bluetooth

The Future of Indoor GPS Part 3: The Broadening Appeal of Ultra Wideband

UWB 2

In the previous installment of our blog series on indoor positioning, we explored all that Bluetooth 5.1 has to offer.  This week, we will examine what may be a major wireless technology of the future: Ultra Wideband.

In September 2019, the inclusion of a U1 chip was listed among the innovations announced with the  iPhone 11. The U1 chip provides Ultra Wideband (UWB) connectivity. Those knowledgable on UWB recognize that the inclusion of the U1 chip is a major step toward UWB becoming a household name technology like Bluetooth and WiFi.

HISTORY

UWB signifies a number of synonymous terms, including impulse, carrier-free, baseband, time domain, nonsinusoidal, orthogonal function and large-relative-bandwidth radio/radar signals.

Guglio Marcone, UWB innovator

Guglielmo Marconi, UWB innovator

UWB was first employed by Guglielmo Marconi in 1901 to transmit Morse code sequences across the Atlantic Ocean using spark gap radio transmitters. Development began in the late 1960s with pioneering contributions by Harmuth at Catholic University of America, Ross and Robbins at Sperry Rand Corporation, and Paul van Etten at USAF’s Rome Air Development Center in Russia. In the early 2000s, UWB was used in military radars, covert communication, and briefly in medical imaging applications such as remote heart monitoring systems. Its adoption lagged until commercial interests began exploring potential innovative uses.

MODERN USAGE

via Sewio

via Sewio

UWB is a short-range wireless communication protocol. It differs from WiFi and Bluetooth in that it uses radio waves operating at a very high frequency. Ultra Wideband alludes to the wide spectrum of GHz of the waves it utilizes, 5000 MHz or higher. Wi-Fi and LTE radio bands are about one-tenth as wide, typically ranging from 20 to 80 MHz. UWB is like a radar that can lock into objects to identify their location and transmit data.

Apple describes UWB technology as providing “spatial awareness”—it can continuously scan a room and precisely lock onto specific objects. One of the major applications for it in the iPhone 11 is the ability for the user to point their device at another device to target it for an Airdrop.

INDOOR POSITIONING

The primary usages of UWB are expected to be in indoor positioning, location discovery, and device ranging according to IDC research director Phil Solis. Compared to Wi-Fi and Bluetooth, UWB is extremely low power and the high bandwidth makes it perfect for relaying mass amounts of data from a host device to other devices around 30 feet away. Unlike Wi-Fi, UWB is not particularly good at transmitting through walls, but its robustness against interference and high data rate (110 kbit/s – 6.8 Mbit/s) enable ideal, ultra-precise indoor positioning.

The inclusion of the UWB U1 chip in the iPhone 11 paves the way for applications in indoor mapping and navigation, smart home and vehicle access and control, enhanced augmented reality, and mobile payments that are more secure than NFC.

MASS ADOPTION

As new applications continue to emerge and the demand for indoor positioning increases, the major hurdle UWB faces is a lack of existing infrastructure. Apple and Huawei, the two largest smartphone makers in the world, are developing UWB projects, including chip and antenna production. Apple’s decision to include it in the iPhone 11 is the first time a UWB chip will be deployed on a smartphone. As trendsetters, it stands to reason that UWB will only grow in popularity from here and mass adoption may be inevitable.

Stay tuned for the next entry in our Indoor Positioning blog series which will explore RFID Tags!

The Future of Indoor GPS Part 2: Bluetooth 5.1′s Angle of Arrival Ups the Ante for BLE Beacons

What-is-Bluetooth-5.1-Everything-You-Need-to-Know

In the last installment of our blog series on indoor positioning, we examined an overview of the top indoor positioning technologies. This week, we will examine the most precise and popular method: Bluetooth BLE Beacons and how Bluetooth 5.1 enables them to be the most popular indoor positioning tool on the market.

As the world transitions into a wireless society, Bluetooth technology has evolved and gained more and more popularity. Apple’s decision to remove 1/8th inch audio ports from their devices, while irksome to many consumers, was a definitive move in the direction of Bluetooth.

The growing market for indoor positioning has incentivized an evolution in the landscape of Bluetooth technology. The first consumer bluetooth device was launched in 1999. This year, the world is forecasted to ship more than 4.5 billion Bluetooth devices worldwide. Behind the scenes, manufacturers are using Bluetooth technology for asset tracking and warehouse management. Bluetooth 5.1 technology, in concert with Bluetooth BLE Beacons, is the most popular indoor positioning method.

Nordic nRF52840-Dongle

Nordic nRF52840-Dongle

BLUETOOTH 5.1

Announced in January 2019 by the Bluetooth Special Interest Group (SIG), Bluetooth 5.1 is the latest and most powerful iteration of Bluetooth technology yet.

Bluetooth 5.1 can connect with other devices at a distance of 985 feet, quadruple Bluetooth 4.0. Bluetooth 5.1 improves upon Bluetooth 4.0′s indoor positioning capabilities with Angle of Arrival (AoA) and Angle of Departure (AoD) features. When used for indoor location, Bluetooth 5.1 can provide up to 1-10 centimeters of accuracy with very little lag. At 48MBps, Bluetooth 5.1 is twice as fast as Bluetooth 4.0.

In addition to being faster and more powerful, Bluetooth 5.1 is the continuation of Low Energy LE, consuming less power than previous iterations of Bluetooth.

INDOOR POSITIONING

Bluetooth BLE Beacons are attached to objects, vehicles, devices, etc. and used to track their location. Bluetooth BLE beacons enable Bluetooth devices to communicate with IoT products and other devices. The top suppliers in the  beacon space include Kontakt, Blukii, Minew, Gimbal, Estimote, and EM Microelectronic.

AoA and AoD features are at the core of what enhances positioning technologies in Bluetooth 5.1.

Angle of Arrival diagram via ScienceDirect.com

Angle of Arrival diagram via ScienceDirect.com

In AoA, the  device or tag transmits a specific direction-finding packet using one antenna. The receiving device receives the incoming signal with multiple antennas, each antenna receiving the signal at slightly different times relative to each other. An algorithm factors in the shifts in signal and yields precise coordinate information.

AoD flips the scenario. The device sending the signal has an array of antennas and transmits a packet via the antenna ray. The receiving device then makes an IQ sampling of its antenna to determine the coordinate calculation.

USE CASES

Enhanced indoor positioning enables a number of use cases. In sports stadiums and music venues,  a locating hub near the center of the arena can receive signals from devices using AoA technology and determine location coordinates. Keys, perhaps the most commonly lost object, can be embedded with a sensor and located using a locator hub equipped by a smart home.

Bluetooth BLE Beacons, harnessing Bluetooth 5.1, remain the most cost and energy-efficient method of attaining precise indoor positioning locations.

Stay tuned for the next entry in our Indoor Positioning blog series which will explore the wonders of Ultra-Wideband (UWB) technology!

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

background-hand-social

GPS can help you get from A to B, but what can it do to enhance your indoor retail experience?  Over the next several entries, the Mystic Media Blog will endeavor on a five-part deep dive into the top indoor location technologies and how they will help form the retail experience of the future.

GPS has become ingrained in our everyday lives. Zoomers will never know of a world without GPS, the world of Mapquest and just plain old maps.

While Google Maps, Waze, and Apple Maps can take you from your home to your favorite retailer, finding your way around large stores remains difficult. As a business owner, you want to make the act of navigating the store as easy as possible so that your customers have a positive experience finding what they want. Indoor GPS can solve that problem.

In the past five years, indoor positioning has blown up. The global market for indoor location technology is projected to hit $40.99 billion by 2022, a significant increase from $5.22 billion in 2016. That’s a compound annual growth rate of 42%. With $2.4 billion anticipated in annual spending on beacons and asset tracking by the end of 2020, IPS or Indoor Positioning Systems are here to stay.

Here are the top IPS technologies in use today:

Bluetooth-5.1-Beacon

BLE 5.1 BEACONS

Bluetooth Low Energy Beacons are tiny battery powered devices that can connect to bluetooth-enabled devices like smartphones.

When it comes to indoor positioning, the more precise the positioning, the larger the investment required to achieve it. Bluetooth Low Energy beacons have become a technology stack because they require relatively inexpensive hardware to achieve an accuracy of up to 1-3 meters. BLE 5.1 beacons have improved upon that, providing 1-10 centimeters of accuracy with minimal lag.

BLE is extremely power efficient and cost-effective, minimally draining a phone’s battery  when connected, and can be used within WiFi access points or lighting infrastructure. Since they infrequently require maintenance, they are often used in high-traffic venues.

Locatify-UWB-Ultrawideband-RTLS

ULTRA-WIDEBAND (UWB)

Ultra-wideband (UWB) is a radio technology utilizing low power consumption for a high-bandwidth connection. UWB has extremely precise locating abilities, dialing in to locate objects within one centimeter.

In September 2019, Apple announced the iPhone 11 includes a “U1” chip with UWB technology; however, UWB technology is currently not widely available. Many consider it to be the future of indoor positioning technology, but the lack of existing infrastructure will likely delay mass adoption. Regardless, for applications like warehouse tracking where ultra-precise positioning is required, UWB is an ideal solution.

RFID

RFID TAGS

RFID stands for Radio Frequency Identification. RFID is a simple technology with a tag and a reader. The reader extracts data from the tag using radio-frequency electromagnetic field and identifies the object the tag is attached to.

Although RFID is often used in combination with other technologies for more precise indoor location, the market for RFID is gradually increasing. It’s currently slated for growth in the apparel and shoes space, with great potential in other markets such as healthcare and automotive.

augmented-reality-indoor-navigation-development

AR-BASED NAVIGATION

Indoor navigation utilizing Augmented Reality technologies can do more than just help you navigate a store, it can totally revolutionize the retail experience.  AR can create virtual paths and arrows to help navigate the store. For businesses, AR can improve internal processes by making it easier for staff to navigate offices and warehouses.

This technology is enabled by placing visual markers which can be scanned by the users using their mobile device’s camera. The phone will then guide the user through the retail experience and can be customized to help them find what they need.

In May 2019, the number of AR-enabled devices around the world reached 1.05 billion. Apple and Google are actively working on improving ARKit and ARCore, their AR software development frameworks. Beyond simply helping customers and staff navigate stores, AR will pave the way for personalized shopping experiences unlike any we’ve seen before.

CONCLUSION

While BLE Beacons are currently the leader in the marketplace, many technologies are competing to pioneer the most advanced and accurate indoor location technologies. Given the countless applications, the future is looking bright for indoor location applications! Tune into our next indoor positioning blog when we take a deep dive into BLE 5.1 beacons.