Tag Archives: Technology

HL7 Protocol Enhances Medical Data Transmissions–But Is It Secure?

In our last blog, we examined how DICOM became the standard format for transmitting files in medical imaging technology. As software developers, we frequently find ourselves working in the medical technology field navigating new formats and devices which require specialized attention.

This week, we will jump into one of the standards all medical technology developers should understand: the HL7 protocol.

The HL7 protocol is a set of international standards for the transfer of clinical and administrative data between hospital information systems. It refers to a number of flexible standards, guidelines, and methodologies by which various healthcare systems communicate with each other. HL7 connects a family of technologies, providing a universal framework for the interoperability of healthcare data and software.

Founded in 1987, Health Level Seven International (HL7) is a non-profit, ANSI-accredited standards developing organization that manages updates of the HL7 protocol. With over 1,600 members from over 50 countries, HL7 International represents brain trust incorporating the expertise of healthcare providers, government stakeholders, payers, pharmaceutical companies, vendors/suppliers, and consulting firms.

HL7 has primary and secondary standards. The primary standards are the most popular and integral for system integrations, interoperability, and compliance. Primary standards include the following:

  • Version 2.x Messaging Standard–an interoperability specification for health and medical transactions
  • Version 3 Messaging Standard–an interoperability specification for health and medical transactions
  • Clinical Document Architecture (CDA)–an exchange model for clinical documents, based on HL7 Version 3
  • Continuity of Care Document (CCD)–a US specification for the exchange of medical summaries, based on CDA.
  • Structured Product Labeling (SPL)–the published information that accompanies a medicine based on HL7 Version 3
  • Clinical Context Object Workgroup (CCOW)–an interoperability specification for the visual integration of user applications

While HL7 may enjoy employment worldwide, it’s also the subject of controversy due to underlying security issues. Researchers from the University of California conducted an experiment to simulate an HL7 cyber attack in 2019, which revealed a number of encryption and authentication vulnerabilities. By simulating a main-in-the-middle (MITM) attack, the experiment proved a bad actor could potentially modify medical lab results, which may result in any number of catastrophic medical miscues—from misdiagnosis to prescription of ineffective medications and more.

As software developers, we advise employing advanced security technology to protect patient data. Medical professionals are urged to consider the following additional safety protocols:

  • A strictly enforced password policy with multi-factor authentication
  • Third-party applications which offer encrypted and authenticated messaging
  • Network segmentation, virtual LAN, and firewall controls

While HL7 provides unparalleled interoperability for health care data, it does not provide ample security given the level of sensitivity of medical data—transmissions are unauthenticated and unvalidated and subject to security vulnerabilities. Additional security measures can help medical providers retain that interoperability across systems while protecting themselves and their patients from having their data exploited.

LiDAR: The Next Revolutionary Technology and What You Need to Know

In an era of rapid technological growth, certain technologies, such as artificial intelligence and the internet of things, have received mass adoption and become household names. One up-and-coming technology that has the potential to reach that level of adoption is LiDAR.

WHAT IS LIDAR?

LiDAR, or light detection and ranging, is a popular remote sensing method for measuring the exact distance of an object on the earth’s surface. Initially used in the 1960s, LiDAR has gradually received increasing adoption, particularly after the creation of GPS in the 1980s. It became a common technology for deriving precise geospatial measurements.

LiDAR requires three components: the scanner, laser, and GPS receiver. The scanner sends a pulsed laser to the GPS receiver to calculate an object’s variable distances from the earth surface. The laser emits light which travels to the ground and reflects off things like buildings, tree branches and more. The reflected light energy then returns to the LiDAR sensor where the associated information is recorded. In combination with photodetector and optics, it allows for an ultra-precise distance detection and topographical data.

WHY IS LIDAR IMPORTANT?

As we covered in our rundown of the iPhone 12, new iOS devices come equipped with a brand new LiDAR scanner. LiDAR now enters the hands of consumers who have Apple’s new generation of devices, enabling enhanced functionality and major opportunities for app developers. The proliferation of LiDAR signals toward the technology finding mass adoption and household name status.

There are two different types of LiDAR systems: Terrestrial and Airborne. Airborne LiDAR are installed on drones or helicopters for deriving an exact measurement of distance, while Terrestrial LiDAR systems are installed on moving vehicles to collect pinpoints. Terrestrial LiDAR systems are often used to monitor highways and have been employed by autonomous cars for years, while airborne LiDAR are commonly used in environmental applications and gathering topographical data.

With the future in mind, here are the top LiDAR trends to look out for moving forward:

SUPERCHARGING APPLE DEVICES

LiDAR enhances the camera on Apple devices significantly. Auto-focus is quicker and more effective on those devices. Moreover, it supercharges AR applications by greatly enhancing the speed and quality of a camera’s ability to track the location of people as well as place objects.

One of the major apps that received a functionality boost from LiDAR is Apple’s free Measure app, which can measure distance, dimensions, and even whether an object is level. The measurements determined by the app are significantly more accurate with the new LiDAR scanner, capable of replacing physical rulers, tape measures, and spirit levels.

Microsoft’s Seeing AI application is designed for the visually impaired to navigate their environment, however, LiDAR takes it to the next level. In conjunction with artificial intelligence, LiDAR enables the application to read text, identify products and colors, and describe people, scenes, and objects that appear in the viewfinder.

BIG INVESTMENTS BY AUTOMOTIVE COMPANIES

LiDAR plays a major role in autonomous vehicles, relying on a terrestrial LiDAR system to help them self-navigate. In 2018, reports suggest that the automotive segment acquired a business share of 90 percent. With self-driving cars inching toward mass adoption, expect to see major investments in LiDAR by automotive companies in 2021 and beyond.

As automotive companies look to make major investments in LiDAR, including Volkswagen’s recent investment in Aeva, many LiDAR companies are competing to create the go-to LiDAR system for automotive companies. Check out this great article by Wired detailing the potential for this bubble to burst.

LIDAR DRIVING ENVIRONMENTAL APPLICATIONS

Beyond commercial applications and the automotive industry, LiDAR is gradually seeing increased adoption for geoscience applications. The environmental segment of the LiDAR market is anticipated to grow at a CAGR of 32% through 2025. LiDAR is vital to geoscience applications for creating accurate and high-quality 3D data to study ecosystems of various wildlife species.

One of the main environmental uses of LiDAR is for soliciting topographic information on landscapes. Topographic LiDAR is expected to see a growth rate of over 25% over the coming years. These systems can see through forest canopy to produce accurate 3D models of landscapes necessary to create contours, digital terrain models, digital surface models and more.

CONCLUSION

In March 2020, after the first LiDAR scanner became available in the iPad Pro, The Verge put it perfectly when they said that the new LiDAR sensor is an AR hardware solution in search of software. While LiDAR has gradually found increasing usage, it is still a powerful new technology with burgeoning commercial usage. Enterprising app developers are looking for new ways to use it to empower consumers and businesses alike.

For supplementary viewing on the inner workings of the technology, check out this great introduction below, courtesy of Neon Science.

How to Leverage AR to Boost Sales and Enhance the Retail Experience

The global market for VR and AR in retail will reach $1.6 billion by 2025 according to research conducted by Goldman Sachs. Even after years of growing popularity, effectively employed Augmented Reality experiences feel to the end-user about as explicitly futuristic as any experience created by popular technology.

We have covered the many applications for AR as an indoor positioning mechanism on the Mystic MediaTM blog, but when it comes to retail, applications for AR are providing real revenue boosts and increased conversion rates.

Augmented Reality (AR) History

Ivan Sutherland 1

While working as an associate professor at Harvard University, computer scientist Ivan Sutherland, aka the “Father of Computer Graphics”, created an AR head-mounted display system which constituted the first AR technology in 1968. In the proceeding decades, AR visual displays gained traction in universities, companies, and national agencies as a way to superimpose vital information on physical environments, showing great promise for applications for aviation, military, and industrial purposes.

Fast forward to 2016, the sensational launch of Pokemon GO changed the game for AR. Within one month, Pokemon GO reached 45 million users, showing there is mainstream demand for original and compelling AR experiences.

Cross-Promotions

Several big brands took advantage of Pokemon GO’s success through cross-promotions. McDonald’s paid for Niantic to turn 3,000 Japan locations into gyms and PokeStops, a partnership that has recently endedStarbucks took advantage of Pokemon GO’s success as well by enabling certain locations to function as PokeStops and gyms, and offering a special Pokemon GO Frappucino.

One of the ways retailers can enter into the AR game without investing heavily in technology is to cross-promote with an existing application.

In 2018, Walmart launched a partnership with Jurassic World’s AR game: Jurassic World Alive. The game is similar to Pokemon GO, using a newly accessible Google Maps API to let players search for virtual dinosaurs and items on a map, as well as battle other players. Players can enter select Walmart locations to access exclusive items.

Digital-Physical Hybrid Experiences

The visual augmentation produced by AR transforms physical spaces by leveraging the power of computer-generated graphics, an aesthetic punch-up proven to increase foot traffic. While some retailers are capitalizing on these hybrid experiences through cross-promotions, others are creating their own hybrid experiential marketing events.

Foot Locker developed an AR app that used geolocation to create a scavenger hunt in Los Angeles, leading customers to the location where they could purchase a pair of LeBron 16 King Court Purple shoes. Within two hours of launching the app, the shoes sold out.

AR also has proven potential to help stores create hybrid experiences through indoor navigation. Users can access an augmented view of the store through their phones, which makes in-store navigation easy. Users scan visual markers, recognized by Apple’s ARKitGoogle’s ARCore, and other AR SDKs, to establish their position, and AR indoor navigation applications can offer specific directions to their desired product.

Help Consumers Make Informed Choices

Ikea Place Screenshots

AR is commonly employed to enrich consumers’ understanding of potential purchases and prompt them to buy. For example, the “IKEA Place” app allows shoppers to see IKEA products in a superimposed graphics environment. IKEA boasts the app gives shoppers 98% accuracy in buying decisions.

Converse employs a similar application, the “Converse Sampler App”, which enables users to view what a shoe will look like on their feet through their device’s camera. The application increases customer confidence, helping them make the decision to purchase.

Treasury Wines Estates enhances the consumer experience with “Living Wine Labels”: AR labels that bring the history of the vineyard to life and provide users with supplementary information, including the history of the vineyard the wine came from and tasting notes.

Conclusion

AR enables striking visuals that captivate customers. As a burgeoning tool, AR enables companies to get creative and build innovative experiences that capture their customers’ imagination. Retailers who leverage AR will seize an advantage both in the short term and in the long term as the technology continues to grow and evolve.

The Future of Indoor GPS Part 5: Inside AR’s Potential to Dominate the Indoor Positioning Space

In the previous installment of our blog series on indoor positioning, we explored how RFID Tags are finding traction in the indoor positioning space. This week, we will examine the potential for AR Indoor Positioning to receive mass adoption.

When Pokemon Go accrued 550 million installs and made $470 million in revenues in 2016, AR became a household name technology. The release of ARKit and ARCore significantly enhanced the ability for mobile app developers to create popular AR apps. However, since Pokemon Go’s explosive release, no application has brought AR technology to the forefront of the public conversation.

When it comes to indoor positioning technology, AR has major growth potential. GPS is the most prevalent technology navigation space, but it cannot provide accurate positioning within buildings. GPS can be accurate in large buildings such as airports, but it fails to locate floor number and more specifics. Where GPS fails, AR-based indoor positioning systems can flourish.

HOW DOES IT WORK?

AR indoor navigation consists of three modules: Mapping, Positioning, and Rendering.

via Mobi Dev

via Mobi Dev

Mapping: creates a map of an indoor space to make a route.

Rendering: manages the design of the AR content as displayed to the user.

Positioning: is the most complex module. There’s no accurate way of using the technology available within the device to determine the precise location of users indoors, including the exact floor.

AR-based indoor positioning solves that problem by using Visual Markers, or AR Markers, to establish the users’ position. Visual markers are recognized by Apple’s ARKit, Google’s ARCore, and other AR SDKs.  When the user scans that marker, it can identify exactly where the user is and provide them with a navigation interface. The further the user is from the last visual marker, the less accurate their location information becomes. In order to maintain accuracy, developers recommend placing visual markers every 50 meters.

Whereas beacon-based indoor positioning technologies can become expensive quickly, running $10-20 per beacon with a working range of around 10-100 meters of accuracy, AR visual markers are the more precise and cost-effective solution with an accuracy threshold down to within millimeters.

Via View AR

Via View AR

CHALLENGES

Performance can decline when more markers have been into an AR-based VPS because all markers must be checked to find a match. If the application is set up for a small building where 10-20 markers are required, it is not an issue. If it’s a chain of supermarkets requiring thousands of visual markers across a city, it becomes more challenging.

Luckily, GPS can help determine the building where the user is located, limiting the number of visual markers the application will ping. Innovators in the AR-based indoor positioning space are using hybrid approaches like this to maximize precision and scale of AR positioning technologies.

CONCLUSION

AR-based indoor navigation has had few cases and requires further technical development before it can roll out on a large scale, but all technological evidence indicates that it will be one of the major indoor positioning technologies of the future.

This entry concludes our blog series on Indoor Positioning, we hope you enjoyed and learned from it! In case you missed it, check out our past entries:

The Future of Indoor GPS Part 1: Top Indoor Positioning Technologies

The Future of Indoor GPS Part 2: Bluetooth 5.1′s Angle of Arrival Ups the Ante for BLE Beacons

The Future of Indoor GPS Part 3: The Broadening Appeal of Ultra Wideband

The Future of Indoor GPS Part 4: Read the Room with RFID Tags

A Smarter World Part 4: Securing the Smart City and the Technology Within

In the last installment of our blog series on smart cities, we examined how smart transportation will make for a more efficient society. This week, we’ll examine how urban security stands to evolve with the implementation of smart technology.

Smart security in the modern era is a controversial issue for informed citizens. Many science fiction stories have dramatized the evolution of technology, and how every advance increases the danger of reaching a totalitarian state—particularly when it comes to surveillance. However, as a society, it would be foolish to refrain from using the technical power afforded to us to protect our cities.

Here are the top applications for smart security in the smart cities of the future:

Surveillance

minority-report-iris-scan-blog-hero-778x391

Surveillance has been a political point of contention and paranoia since the Watergate scandal in the early 1970s. Whistleblower Edward Snowden became a martyr or traitor depending on your point of view when he exposed vast surveillance powers used by the NSA. As technology has rapidly evolved, the potential for governments to abuse their technological power has evolved with it.

Camera technology has evolved to the point where everyone has a tiny camera on them at all time via their phones. While monitoring entire cities with surveillance feeds is feasible, the amount of manpower necessary to monitor the footage and act in a timely manner rendered this mass surveillance ineffective. However, deep learning-driven AI video analytics tools can analyze real-time footage and identify anomalies, such as foreboding indicators of violence, and notify nearby law enforcement instantly.

In China, police forces use smart devices allied to a private broadband network to discover crimes. Huawei’s eLTE system allows officers to swap incident details securely and coordinate responses between central command and local patrols. In Shanghai, sophisticated security systems have seen crime rates drop by 30% and the amount of time for police to arrive at crime scenes drop to 3 minutes.

In Boston, to curb gun violence, the Boston police force has deployed an IoT sensor-based gunfire detection system that notifies officers to crime scenes within seconds.

Disaster Prevention

shutterstock_457990045-e1550674981237

One of the major applications of IoT-based security system involves disaster prevention and effective use of smart communication and alert systems.

When disasters strike, governments require a streamlined method of coordinating strategy, accessing data, and managing a skilled workforce to enact the response. IoT devices and smart alert systems work together to sense impending disasters and give advance warning to the public about evacuations and security lockdown alerts.

Cybersecurity

The more smart applications present in city infrastructure, the more a city becomes susceptible to cyber attack. Unsecured devices, gateways, and networks each represent a potential vulnerability for a data breach. The average cost of a data breach according to IBM and the Poneman Institute is estimated at $3.86 million dollars. Thus, one of the major components of securing the smart city is the ramping up of cybersecurity to prevent hacking.

smart-city-1 graphic

The Industrial Internet Consortium are helping establish frameworks across technologies to safely accelerate the Industrial Internet of Things (IIot) for transformational outcomes. GlobalSign works to move secure IoT deployments forward on a world-wide basis.

One of the first and most important steps toward cybersecurity is adopting standards and recommended guidelines to help address the smart city challenges of today. The Cybersecurity Framework is a voluntary framework consisting of standards, guidelines, and best practices to manage cybersecurity-related risk published by the National Institute of Standards and Technology (NIST), a non-regulatory agency in the US Department of Commerce. Gartner projects that 50% of U.S. businesses, critical infrastructure operators, and countries around the globe will use the framework as they develop and deploy smart city technology.

Conclusion

The Smart City will yield a technological revolution, begetting a bevy of potential applications in different fields, and with every application comes potential for hacker exploitation. Deployment of new technologies will require not only data standardization, but new security standardizations to ensure that these vulnerabilities are protected from cybersecurity threats. However, don’t expect cybersecurity to slow the evolution of the smart city too much as it’s expected to grow into a $135 billion dollar industry by 2021 according to TechRepublic.

This concludes our blog series on Smart Cities, we hope you enjoyed and learned from it! In case you missed it, check out our past entries for a full picture of the future of smart cities:

A Smarter World Part 1: How the Future of Smart Cities Will Change the World

A Smarter World Part 2: How Smart Infrastructure Will Reshape Your City

A Smarter World Part 3: How Smart Transportation Will Accelerate Your Business

A Smarter World Part 1: How the Future of Smart Cities Will Change the World

Are you ready for smart cities of the future?  Over the next few weeks, we will be endeavoring on a series of blogs exploring what the big players are developing for smart cities and how they will shape our world.

When the world becomes smart, life will begin to look a lot more like THE JETSONS!

When the world becomes smart, life will begin to look a lot more like THE JETSONS!

Our cities will become smart when they are like living organisms: actively gathering data from various sources and processing it to generate intelligence to drive responsive action. IoT, 5G, and AI will all work together to enable the cities of the future. IoT devices with embedded sensors will gather vast amounts of data, transmit it via high-speed 5G networks, and process it in the cloud through AI-driven algorithms designed to come up with preventative action. From smart traffic to smart flooding control, the problems smart cities can potentially solve are endless.

Imagine a world where bridges are monitored by hundreds of tiny sensors that send information about the amount of pressure on different pressure points. The data from those sensors instantly transmits via high-speed internet networks to the cloud where an AI-driven algorithm calculates potential breaking points and dispatches a solution in seconds.

That is where we are headed—and we’re headed there sooner than you think. Two-thirds of cities globally are investing in smart city technology and spending is projected to reach $135 billion by 2021. Here are the three of the top applications leading the charge in the Smart Cities space.

Smart Infrastructure

SMART INFRASTRUCTURE

As our opening description of smart bridges implies, smart infrastructure will soon become a part of our daily lives. In New Zealand, installed sensors monitor water quality and issue real-time warnings to help swimmers know where it’s safe to swim.

In order to enable smart functionality, sensors will need to be embedded throughout the city to gather vital information in different forms. In order to process the abundance of data, high-volume data storage and high-speed communications powered by high-bandwidth technologies like 5G will all need to become the norm before smart infrastructure can receive mass adoption.

Stay tuned for our next blog where we’ll get more in-depth on the future of smart infrastructure.

Smart Cars

SMART TRANSPORTATION

From smart parking meters to smart traffic lights, from autonomous cars to scooters and electric car sharing services, transportation is in the midst of a technological revolution and many advanced applications are just on the cusp of realization.

Smart parking meters will soon make finding a parking space in the city and paying for it easy.  In the UK, local councils can now release parking data in the same format, solving one of the major obstacles facing smart cities: Data Standardization (more on that later).

Autonomous cars, powered by AI, IoT, and 5G, will interact with the smart roads on which they are driving, reducing traffic and accidents dramatically.

While there is a debate about the long-term effectiveness of electric motorized scooters as a mode of transportation, they’ve become very popular in major US cities like San Francisco, Oakland, Los Angeles, Salt Lake City and are soon to come in Brooklyn.

With the New York Subway system in shambles, it seems inevitable the biggest city in the world will receive a state-of-the-art smart technology to drastically improve public transit.

Surveillance State

SMART SECURITY

The more you look at potential applications for smart security, the more it feels like you are looking at the dystopian future of the novel 1984.

Potential applications include AI-enabled crowd monitoring to prevent potential threats. Digital cameras like Go-Pros have shrunk the size of surveillance equipment to smaller than an apple. Drones are available at a consumer level as well. While security cameras can be placed plentifully throughout a city, one major issue is cultivating the manpower required to analyze all of the footage being gathered for potential threats. AI-driven algorithms to analyze footage for threats will enable municipalities to analyze threats and respond accordingly.

However, policy has not caught up with technology. The unique ethical quandaries brought up by smart security and surveillance will play out litigiously and dictate to what degree smart security will become a part of the cities of the future.

CONCLUSION

We can see what the future may look like, but how we’ll get there remains a mystery. Before smart technologies can receive mass adoption, legislation will need to be passed by both local and national governments. In addition, as the UK Parking Meter issue shows, data standardization will be another major obstacle for smart technology manufacturers. When governments on both a local and a national level an get on the same page with regard to how to execute smart city technology and legislation, the possibilities for Smart Cities will be endless.

Stay tuned next week for our deep dive into the future applications of Smart Infrastructure!

How the Revolutionary Mechanics of Blockchain Technology Could Serve Your Business

In the last entry in our cryptocurrency series, we explored how to secure your cryptocurrency with the right wallet. This week, we’ll take a look at the mechanics of the Blockchain across industries.

While the debate over whether Bitcoin will become the dominant cryptocurrency is far from over, the mechanics behind Bitcoin are unquestionably revolutionary. Blockchain technology has the potential to disrupt more than just currency, but industries ranging from healthcare to Wall Street.

The Blockchain is a secure ledger database shared by all parties participating in an established, distributed network of computers. The Blockchain decentralizes the process of validating transactions, allocating the duties to computers throughout the network.

Blockchain is revolutionary because it eliminates the need for a central authority, allowing for a real-time ledger that is not dependent on a single entity governing the transactions.

Imagine if in order to make changes to a text document, you had to email a colleague who would then update the document on Microsoft Word and send the updated file out to all relevant parties on the team. The updating of information would quickly become an inefficient process that is heavily dependent on the central entity (the colleague). Blockchain posits a workflow that is more like Google Docs in that it allows updates to be made in real time and shared across the network instantly without the need of a central authority. Blockchain enacts this principle by relying on computers within the network to independently validate transactions through cryptography. Thus, the validity of the ledger is determined by the many objective computers on the network rather than a single powerful entity.

The idea of decentralization can also be applied to WhatsApp, the popular messaging app that revolutionized texting and cut the cost of transactions globally. WhatsApp cut out the central authority of phone carrier companies by building the same functionality on a decentralized network (the Internet).

If you’re still confused about Blockchain, check out this awesome video by Wired breaking it down in 2 minutes:

Blockchain has already found usages in many different industries.

  • SMART CONTRACTS

Smart contracts are coded contracts embedded with the terms of an agreement. They are a method for businesses and individuals to exchange money, property, materials, or anything of value in a transparent way that avoids the services of a middleman (such as a lawyer). Smart contracts not only define the rules of an agreement, they automatically enforce the obligations provided in the terms of the contract.

Smart contracts have revolutionized the supply chain and threaten to eliminate the use of lawyers for enforcing contracts. Smart contracts and blockchain ensure data security that could also lead to the transferring of voting to an online system, potentially increasing voter turnout significantly.

  • HEALTHCARE

Within the healthcare industry, Blockchain has the potential to revolutionize data sharing between healthcare providers, resulting in more effective treatments and an overall improved ability for healthcare organizations to offer efficient care. A study from IBM showed that 56% of healthcare executives have a plan to implement a commercial blockchain solution by 2020.

  • SUPPLY CHAIN

Both within the Healthcare industry and elsewhere, blockchain is redefining supply chain management. Blockchain can provide a distributed ledger that tracks the transfer of goods and raw materials across wide-ranging geographical locations and stages. The public availability of the ledger makes it possible to trace the origin of the product down to the raw material used. For this reason, blockchain has also been applied to track organic produce supply chains.

The boon of the Internet of Things and smart objects means that blockchain technology can be extended to process data and manage smart contracts between individuals and their smart devices or even smart homes. Imagine a world where your refrigerator automatically orders eggs when it senses you are running low based on your egg eating habits. This world will be facilitated by a smart contract run on Blockchain technology embedded in an IoT device.

CONCLUSION

While the first blockchain was created for Bitcoin, applications for blockchain are constantly being implemented across industries. As Harvard Business Review smartly points out, the question in most industries is not whether blockchain will influence them, but when.

Many different cryptocurrencies are utilizing variations on Blockchain technology in order to process transactions—some of which are doing so in a more efficient manner than Bitcoin. Next week, we’ll explore the top cryptocurrencies on the market right now and which ones your business should accept.

Monetizing IoT: How the Internet of Things Builds Fortunes

A man sits in a restaurant and orders “The John Candy Burger” (a double cheeseburger with four strips of bacon and a fried egg) through a touch screen embedded into the table. As he gives the waiter his order, his smartwatch vibrates. He checks a push notification which tells him he should not order “The John Candy Burger” based on information gathered from a sensor in his body which has been monitoring his blood pressure and cholesterol among other notable health measurements in a constant stream of data for 15 years with infallible predictive capabilities. It tells him this specific cheeseburger from this specific restaurant will increase his risk of a heart attack on his daily run by 8%. He doesn’t understand how, but he accepts it the way one accepts that the earth is round and the Great Pyramid of Giza existed in 2540 BC.

In the above fictional example, the Internet of Things took the man’s order, evaluated the average nutritional content of the burger based on data gathered through sensors embedded into a smart grill, and transmitted it to the smartwatch where it analyzed nutritional content in the context of over 15 years of health data gathered on the man to inform him on the potential risk of his decision. The Internet of Things is bigger than money. It’s a new world where planes don’t crash and  smartphones can tell their users the location of the nearest empty parking spot to minimize travel time and ensure the city is maintaining optimum functionality. A pregnant wife is gently guided through a safe 9-month path to the newest addition to her family. The edges of the world are being smoothed out by data. The Internet of Things is leading the human race toward new levels of efficiency, productivity and effectiveness.

“Show me the money”

As a major technological evolution takes place, many businesses are looking to monetize it. Although the world has yet to see the full impact of the Internet of Things, it has already revolutionized process improvement for everything from manufacturing to health care, product enhancement, and safety. For the developer eager to enter a burgeoning field with infinite possibilities, here are some of the common techniques for monetizing IoT applications.

ONE-TIME PAY + FREE APP

The most basic monetization method entails creating a simple product with everyday applications, like Jawbone and the Phillips Hue Connected Bulb for example, and offering the equipment for purchase which works in conjunction with a connected app for iOS & Android. This method is most effective for products where the manufacturing cost to market ratio is kept low.

SUBSCRIPTION-BASED

One of the major issues with the IoT is the amount of data generated regularly by their devices. The amount of data and possibilities are so staggering, it’s vital to understand and decide upon relevant metrics and analysis tactics. For developers, it means that the cost of maintaining many IoT apps calls for a constant stream of revenue. Companies like Audi offer a hotspot subscription, ranging from 6 to 30 months, for Audi Connect, their hotspot navigation system utilizing Google Earth and Voice to offer real-time alerts, weather and traffic. In some applications, data plans will likely emerge as a another way of tiering subscription-based purchases.

WHITE LABEL SERVICES

Perhaps the most profitable and complex option, monetizing IoT applications through white label services entails having the foresight to identify the future of the technology and the necessary human & financial resources to act upon it effectively through the creation of a template offering which businesses can rebrand as their own. Jasper Technologies created the Connected Car Cloud as a cloud-based turnkey solution for developing smart-cars with real-time diagnostics, safety, security, and more.

Acquired by Cisco for about $1.4 billion in March, Jasper is one of the big success stories of IoT monetization and a model for future innovators looking to capitalize on the business opportunities brought about by the Internet of Things.

Learn more about IoT through this awesome article with advice from early adopters via Computer World.

Mobile Game Monetization Methods for Bartle Types: Make Bank off Killer Gameplay

The Mystic Media Blog is currently engaged in a series of articles examining each of the Bartle types and how to acquire, retain and monetize them according to their desires. Check out last week’s article on Explorers.

Bartle Types Taxonomy Via Extra Credits

The Killer is the wild card of the Bartle Types. While both Achievers and Killers are competitive,  Achievers compete with/through the game, whereas Killers compete with anyone or anything in their immediate vicinity. The Achiever wants to act upon the game according to the rules of gameplay, while the Killer just wants an immediate thrill. They derive pleasure from interfering with the functioning of the gameplay and/or the experience of other players. Like Internet “trolls”, Killers gleefully enact subversive behavior under the guise of their game persona. They aren’t interested in winning, socializing or exploring – they just want to provoke and impose themselves on the virtual world and its inhabitants.

Killers thrive on the experience of disrupting gameplay. Achievers represent the ultimate target since they are most antagonized by being killed. As a result, in multiplayer games, the more Achievers you have, the more Killers you’ll have, which may lead to a decrease in Achievers and overflow of Killers depending on the level of engagement of the gameplay. Explorers also represent easy prey for Killers, and if there are too many high level Killers, it may become hard for Explorers to explore. Socializers also make an appealing target for Killers in multiplayer games. Like Socializers, Killers are interested in interaction and influence. Some of the same retention tactics apply to both Bartle Types.

The best way to retain Killers is to give them opportunities to disrupt other players or the world of the game. In MMORPGs and shooters, it’s easy for them to find other players to kill. The challenge in single player games (especially single player mobile games) is how to appeal to a Bartle type that thrives on interaction. For one, Killers aren’t just into killing. Interfering with elements of the world will also appeal to them. For instance, if there are elements of the game world, such as crates or trees, which the user can crash into and destroy, it offers the same immediate thrill of interference as player elimination.

Games get creative to offer opportunities for world interaction. In The Legend of Zelda, beyond combat with enemies, Link can also famously antogonize “cuccos”, an element of the world. In Grand Theft Auto V, the ultimate game/franchise for Killers, users can not only kill civilians, but can bump into them for a humorous disruption. Offering cheat codes in single player games represents an opportunity for the Killer to expose and modify the game engine on the game developer’s terms. Pokemon GO employs battles in Pokegyms. Games like Candy Crush give Killers the thrill of destroying parts of the world. Killers love explosions. Giving them a tangible goal, like specific collectibles or targets that generate explosive reactions, will go a long way in retaining their interest.

In order for a Killer to spend money on a game, they must be engaged by the gameplay. Killers are looking for a specific type of satisfaction, a kind of schadenfreude. Retention methods are key since if a Killer doesn’t get satisfaction, they’ll move on quickly to something more immediate. Offering alternate game modes, such as low-gravity or disco mode, may entice Killers’ desire to subvert the game world. In multi-player games, extra weapons, stealth and any advantage in the killing department may tempt Killers to purchase if they are invested in the game.

As with appealing to any Bartle Type, everything begins with engaging gameplay. Thinking of these player types during the process of development will enrich your techniques and ultimately your final product.

Next week, in the final article of our series on Bartle Types, we’ll take a look at Socializers and the best methods for attaining, retaining and monetizing them.

Connect with Millennials Through Snapchat

Many questioned Snapchat’s staying power when the company launched in 2011, but unlike the ephemeral nature of the network’s content strategy, Snapchat has proven it’s here to stay. Statistics show Snapchat has over 100 million daily users that combined watch 7 billion videos per day and contribute 8,800 photos per second. In 5 short years, the company has evolved from fad to one of the fastest growing and most intriguing social media networks on the internet. In 2016, Snapchat is projecting $300-$350 million in revenue, over 600% growth from the company’s 2015 projection of $50 million.

Snapchat thrives on allowing users to focus on the moment rather than perfection. Users can send photos and videos which disappear after they have been viewed. They can also craft “Snap Stories” which remain up for 24 hours after they’ve been posted. Snap Stories created an avenue for major corporations to deliver content  to their followers. Media companies like Vice utilize Snap Stories to deliver the news to millennials, while retail companies like Grubhub have had major success creating promotions.

Here are some creative ways companies are utilizing Snapchat:

MARKETING PROMOTIONS

Since Snap Stories disappear after 24 hours, users are motivated to watch stories frequently or risk missing out on an awesome moment. As a company, offering exclusive discounts or deals through a Snap Story is the ultimate incentive to increase snap views. Grubhub gained acclaim for their #SnapHunt Scavenger Hunt, which awarded 10 winners $50 in free food for each challenge. The personal, one-to-one nature of Snapchat makes it ideal for marketing promotions, which in turn increases your daily views and following.

A LOOK BEHIND THE CURTAIN

Many companies utilize social media to take consumers behind the curtain of day-to-day  operations. The spontaneity of Snapchat provides the ultimate network for such interactions. Snap Stories don’t have to be perfect, they don’t have to be major, they can be casual. Some companies utilize Snapchat to broadcast live events. Small events like birthday parties and company outings can make for engaging content.

Musicians often utilize Snapchat to offer glimpses at their new music. Tommy Hilfiger and Michael Kors both have used Snapchat to preview their new lines.

BROADCAST MEDIA

TV Networks like CNN and Comedy Central utilize Snapchat to promote their shows with bite-sized snippets designed to tease the viewer. CNN targets younger audiences with news stories relevant to them through the Discover function. Coca-Cola realized their audience could detect advertising when the company repurposed their TV commercials for the network, at which point they began creating Snapchat-specific content. The change ultimately was received with a 54% increase in video completion rate.

MAXIMIZING INFLUENCER MARKETING

As any social media expert knows, influencer marketing is key to developing a following and gaining access to new audiences. Snapchat’s emphasis on shared, intimate experiences with the individual makes the format ideal for celebrities and other influencers. Social media stars and acclaimed artists like DJ Khaled can document their day-to-day lives, including the clothes they wear, the stores where they shop, and even bizarre instances of getting lost at sea on a WaveRunner. Celebrities use Snapchat to create a narrative of their daily lives, an unparalleled opportunity for companies to incorporate their product or service and acquire positive brand association.

In one of the best uses of influencer marketing, Ben Stiller & Owen Wilson reprised their roles as Derek Zoolander and Hansel during a Valentino show for Fashion Week in Paris.

While Snapchat provides a major opportunity to market promotions, sculpting public perception of your brand in Snapchat requires a large amount of content in order to compete and keep users satiated. Snapchat is still a burgeoning network with an unlimited amount of possibilities. For an amazing look at the potential future of Snapchat, check out this awesome article from TechCrunch.